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Evaluation of Critical Exponents on the Basis of Stochastic Quantization
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In the context of stochastic quantization of field theories we propose a method to make analytic
computations of critical exponents and we evaluate them for ($ )3. It consists of regularization of
the theory by use of a convenient non-Markovian process, where nonlocality in time is measured
by the regularizing parameter o-. For a fixed dimensionality there is a value of o- where the theory
is renormalizable and asymptotically free in the infrared, allowing a perturbative expansion around
it.
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Analytic computations of critical exponents for
three-dimensional systems with a finite number of
field components within the framework of perturbative
field theory have been possible to do so far only by
means of the e-expansion method. ' As is well known,
the tree approximation yields mean-free values, but
infrared (IR) divergences prevent us from computing
loop corrections at any dimension less than four, in
particular for d =3. A way out of this problem is to
consider the case d ( 4 as an expansion around the
four-dimensional theory; a second aspect of this ex-
pansion is that the P function has a zero of order
& = 4 —d and the method also provides a small parame-
ter to make a perturbative calculation.

In this note we propose an analytical method to ob-
tain exponents in perturbative field theory directly at
the physical value of the dimensionality. In particular,
we shall apply it to the interesting case of ($ ) in
three dimensions.

The technique makes a nontrivial use of the stochas-
tic quantization of field theory. This quantization pro-

= lim (@(x,, t)@(x2,t) @(x„,t)).
f ~ oo

(3)

The field theory defined in this way reproduces the
usual one; therefore, it still has the usual ultraviolet
(uv) divergences and first it must be regularized. An
interesting property of this quantization technique is

cedure, introduced by Parisi and Wu, has already
been extensively used; see, e.g. , Parisi et al. It con-
sists of introduction of an extra time dimension t and
imposition of the following equation for the classical
field:

(8/Bt )P(x, t) = —[5/5&(x, t) ]S+g(x, t), (1)
where S is the classical action and g(x, t) is a Gaussian
delta-correlated random force:

(f(x, t)((x', t')) = 25"(x— )Bx(t t') (2)—.

In this formalism, Green's functions are obtained by
the taking of the infinite-time limit of the average over
g of the corresponding product of fields @(x, t):

G(xt, x2, . . . , x„)
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that it also suggests new regularization procedures.
The idea, introduced by Breit, Gupta, and Zaks, is to
replace the Markovian process defined in Ref. 2 by a
non-Markovian one, i.e., to replace 5(t —t') by a

function g such that

lim g (r —r') = S(r —r')
cr 0

(4)

A convenient form of g is6

g (r —r') = (o-/2)ir —r'i (~)

which has the property that uv divergences appear as
poles in o-.

At this point one can ~onder whether there is a
value of cr = o-' such that IR divergences can be
handled and the corresponding P function has a zero
0 (p) with p = 2(a. —a. ). If such a system exists then
the critical exponents of the original Markovian theory
could be obtained by expansion of the non-Markovian
ones. Following this plane we shall first find the value
o-' and then argue that the corresponding theory is re-
normalizable and asymptotically free in the IR. After
that we shall compute the critical exponents to the
lowest nonzero order in p.

Let us start by noticing that if we consider the in-

teraction 5;„,= (Xo/4! )@ (x, t) and take g (t —r') as
given in (5), then the coupling constant Xo has dimen-
sions given by (p, having dimensions of mass)

[l ] 2o+e (6)

which for d =3 gives a dimensionless coupling con-
stant for o- = ——, .1

A power-counting analysis of the stochastic pertur-
bative series indeed indicates that the theory is renor-
malizable for o-= ——, . Let us recall that the usual

perturbative expansion of field theory comes from sto-
chastic quantization by solving first the Langevin
equation (1) in terms of tree diagrams where one
external line represents the field @(t,x) and all the
other external lines end on a stochastic source
which graphically can be represented with a cross at
the end. Every line corresponds to an integration over
an intermediate time. A tree diagram, therefore, has
one external line without cross E0= 1, a number I of
internal lines I = V —1, V being the number of ver-

!
tices, and a number E, of crossed external lines easily

and, moreover, for a Green's function with E0,E,
external legs coming from a contraction of E0 tree dia-

grams,

2m +E, = 2V+E0.

A standard counting in @ theory gives the relation

V=I. —1+(Z, +Z, )/2, (10)

which combined with Eq. (9) gives m =i. —I+ED,
then using Eqs. (8) and (7) we obtain

D/2= (d/2 —2 —~)1. +3+ —(-', + ~)&o —&,/2.

The theory is renormalizable whenever D is indepen-
dent of I, i.e. , o-'=d/2 —2. In such a case we can
reabsorb the divergences by redefining the parameters
of the Langevin equation (1) which we, therefore,
write in general as

seen to be E, =2V+1. Green's functions are ob-
tained from the average over ( of products of @'s .
This means contraction of the ('s in pairs with use of
Eq. (2), generating loops. We can now get diagrams
with both internal and external lines with a cross com-
ing from the contraction of two ('s. To discuss renor-
malization, we focus on the one-particle irreducible
parts of the Green's functions. From the integration
over the intermediate times we can extract an overall
integration over a time variable which we can call 7. .
This can be obtained for instance by use of polar coor-
dinates in the multiple time integral. ~ 0 means
that every intermediate time approaches t.

Given a diagram with L loops, m internal lines with
a cross, and A' intermediate times we easily obtain by
inspection the overall integration:

—(d/2) L~ m (a. —1)~ N —1y ~
—D/2 —1y (7)

Here the factor ~ " comes from the integration
over momenta, r ' comes from Eq. (5), and

'dv comes from the integration measure. The uv
divergence comes from the behavior at ~ 0 and is

expressed as a pole for D =0. We want to write the
divergence degree D in terms of L and E0,E, . First,
since every internal crossed line corresponds to two
time variables, we have

Z, (8/Br)@g ——(Z~ —mg —Am )@g+ (A.g/3!)p +'Zt @g +Z((, (12)

where we also introduced p, , the momentum scale of
the renormalization procedure. For d =4 we obtain
the usual field theory a-"=0. For d =3, a-'= ——, . In
this case, from Eq. (11) we get a logarithmic diver-
gence for E0= 1, E, = 3 to be reabsorbed by Z] . For
Eo= 1, E, = 1, we have a quadratic divergence reab-
sorbed by 5m (actually this will appear as m times a
pole at D =0) and two logarithmic ones defining Z,

and Z&. Contrary to the d =4 case, here, there is no
divergence for E0 ——2, E, = 0 since D = 1 does not cor-
respond to a pole and therefore Z& = 1, as it is expect-
ed since the divergences appear as local terms in time
and space in the Green's functions (i.e. , they are pro-
portional to 5 functions on their derivatives). But for
a-a0 the correlation g (r —r') is not local in time and
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could not reabsorb divergences.
Finally, from Eq. (12) we compute the wave-

function renormalization Z. Let us rescale the time
t = nt and the noise g = nt 'it

g such that

(g(t)g(t')) = ~)t t'~— '5'(x —x').
With the choice of n = Z, /Z& this amounts to a field
rescaling @= Z' @ where Z' = Z
x Z&t +'it

Z& '. For d = 3 and o- = ——', we have

(13)Z1/2 Z 3/4Z 1/4

Of course, the usual coupling-constant renormalization
constant Zq also involves Z~ times powers of Z, and
Z&. At the one-loop order, however, Z& ——Zy.

We can define the infinite-time limit of Green s
functions also for cre0. The existence of it being en-
sured by a mass gap, s we first take t ~ and then ap-
proach the critical point. Furthermore, we can write
for these Green's functions the standard renormaliza-
tion-group equation. Since uv divergences appear as
poles at p = 0, we can calculate the renormalization
constants by minimal subtraction of these poles. We
find at the lowest order for d = 3,

Zt = 1+ [Xtt 3/(2v m)']/p,

Zq ——1 —[Z~2R q/2(4~)']/p, (14)
Z, = 1 —[),'R, /2(4~)']/p,

FIG. 1. The one-loop graph contributing to the P func-
tion.

where the renormalized coupling constant Xz is given
in terms of the bare one Xo by Xo= k&Z&Z p,~. The
residues R& and R, are given in terms of integrals over
a finite hypercube in four dimensions, which have
been computed numerically and give R &

——0.196
+ 0.003 and R, = 0.264 + 0.004.

As an example, we show how to evaluate the one-
loop diagram which contributes to the P function (Fig.
1). In computing its divergent part we can take zero
momentum. As we take into account Eq. (5), it is

I

given by (apart from a numerical factor)

d kI = rr J J drt J d73J dr2~Tt 12~ 'exp{—k [(t —~3) + ('T3 12) + (t r)t]).(2~)3 o o o

To compute the integral over T~, 'T2, and ~3 we divide it in all possible time orderings. Since t is the largest time
and 73 is always greater than iz we have only three regions: (a) t &73~st ~72, (b) t ~r3 ~72~ rt, and (c)~ 7 t ~ 7 3 'r2 but actually the first two are equal for symmetry reasons. Considering case (a) we change vari-
ables: rt ——t(1 —nt), 72 ——t(1 —ntn2), and ~3= t(1—ntn2n3), obtaining after momentum integration

3/2

I, = rrt +'t', JI dnt dn2nt ' 'n (1 —n ) '(1+n2) (16)

and the integration over o. q yields the pole at a-= ——,'.
The last integral is also immediate but requires an
analytical continuation in o-. After this is done we ob-
tain, at the pole, a positive value for this integral:
I, = [1/(2Jvr)3]/p. I, can be computed in a similar
way, and after we consider the proper combinatorial
factors we obtain Zt as in Eq. (14). The evaluation of
Z& and Z, is more lengthy but it involves the same dif-
ficulties.

We have also evaluated the renormalization constant
Z 2 of the operator @ which can be inserted into the
Green's functions as a standard device to compute the
dependence ov the temperature of physical quantities
near the critical point. We find at the lowest order

Z, = 1+ [X,/(2i~)']/p. (17)
From the renormalization constants we can compute
the renormalization-group function and the anomalous

v] = p, [BlnZ/Bp, ]~,

,
'

p, (B/Bp, ) (1n—Z&+31nZ, ). (20)

371

P = p[Bxtt/Bp]~, = —pa~ + X„'3(24m)

given an IR stable fixed point at

Xt't = p(2M'. )3/3 (19)
which vanishes for o-= ——, , justifying in principle our
perturbative computation as in the e expansion. Of
course, we then extrapolate to o-=0, i.e., p=1. The
critical exponents y and g are given in terms of
anomalous dimensions at the fixed point. Defining
y 2= p, [BlnZ 2/Bp, ]„, to lowest order, we have the
critical exponent y = 1 —

2 y@2 and
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From above we get 7 = 1+p/6 and q = pz(R&
+3R, )/18. The value of y is the same as the one ob-
tained from the e expansion at the same order, i.e. ,

7 = 1+e/6, and in fact the factor 3 ' has in both cases
the same combinatorial origin. At the lowest order in

p we have y=1.167 and q=0.055. On the other
hand, the lowest order in e gives 7) = 0.019. The high-
temperature series yields y = 1.250 + 0.003 and

q = 0.04 + 0.01. We see that both the e- and p-
expansion values for q compare badly with the high-
temperature value which lies somehow in between.
Let us mention a more general point of view. The
idea is to approach the physical point p = e = 1 starting
from an unphysical value in the line p+ e = 1, which
according to Eqs. (6) and (11) corresponds to a renor-
malizable theory. For instance, the e expansion
chooses the direction of approach where p = 1 and the

p expansion the direction e= l. One could think also
of an intermediate situation. Further work in this
direction is currently being pursued.

Let us stress, however, that the series expansion in

p is expected to be asymptotic, and the evaluation of
more terms and the use of resummation techniques
will be necessary as it occurs in the e expansion.

The above calculations can be easily extended to the
O(M) model, i.e., 5;„,= A. o/4!M(qh ) . Evaluating
the corresponding combinatorial factors we obtain

7 =1+p(M+2)/(2M+16),

g =p2(R~+ 3R, ) (3M+ 6)/2(M + 8),
i.e., M appears in the same way as in the e expansion.
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