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Entanglements of Semidiluie Polymer Rods
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Brownian simulations of semidilute rods confirm that rotation of rods is ordinarily confined to
cages which break up through diffusion along rod axes. However, the angular width of the cages is

proportional to 1/(cL3)~ is the rods are thin, with p = ~ rather than the previously supposed p = 1.
The latter result is found only for rods at true equilibrium, which cannot occur unless cage topology
equilibrates as fast as cage size.

PACS numbers: 61.25.Hq, 05.60. +w, 36.20.Ey

As the simplest examples of entangling polymers, '

semidilute solutions of long rods have considerable in-
terest. The Doi-Edwards'2 theory (DET) predicts de-
finite scaling relations between the rotational diffusion
constant D„„and the concentration c and length L of
the rods. The conventional faith that scaling coeffi-
cients are near unity then leads to D„, values that are
much smaller than observed values in the accessible
range of the dimensionless parameter cL . This work
reports on Brownian simulations of the rotational time
correlation function C(t) The results . lead to the con-
clusion that a DET is correct in its picture of rotational
diffusion as motion whithin cages that are occasionally
dissolved by diffusion along rod axes. However, the
results and mean-field arguments show that DET is in-
correct in its calculation of cage sizes, because of an
unwarranted assumption that the rods are at equilibri-
um. This conclusion is not based on cage sizes or D„,
alone; BET actually gives larger cage sizes throughout
most of the studied range of cL than the proper en-
semble, but predicts much too rapid a decrease of cage
size with increasing cL and cannot fit the C(t) data.
A revised theory is in good agreement with the simula-
tions. The following points will be considered: the
physical model and methods used for the simulation,
the formalism used to describe and analyze the results,
the results themselves, and a mean-field rationaliza-
tion.

For the simulations each rod was constructed as a
chain of three beads. The two bonds within a rod were
constrained by vibrational forces to prescribed fluctua-
tions of length and relative angle. The work reported
here concerns only quite rigid, straight rods. A pro-
gram designed for the general study of internal motion
in polymer chains was used with slight modification:
(1) The vibrational force constants that restrict the rel-
ative motion of successive beads were set to 0 after
every third bead. (2) Hydrodynamic interaction
between beads was suppressed. (3) The interaction
potential between beads was replaced by an interaction
between bonds, namely, (e/sinr0) o. ' exp( —aro ), -

where ro is the shortest distance between two bonds, ~
is the crossing angle between them, and ~ and ~ are
parameters discussed below. The units of energy, dis-

tance, and time were ktt T, b, and Pb /k&T, respective-
ly, where b is a reference unit of length and P is the
friction constant of the end beads. The chosen param-
eter values, usually e =100 and o. =12, give a poten-
tial strong enough that rod crossings were never ob-
served in studies designed to show them. They might
have occurred on occasion, but the results on rotation-
al motion in frozen environments show that crossings
were statistically insignificant.

A more elaborate formalism than that of DET is
used for analysis of the simulations, in order to bridge
the gap between short-time caged motion and long-
time exponential decay. The formalism describes the
angular motion of a rod in terms of the position of an
end bead on the spherical surface of radius L/2; see
Doi. ' The two-component bead velocity vector v on
the surface is assumed to obey the equation

m, dv/dt

p OO= —P,v —„K(7.)v(t —~) dr + F(t),
where F(t) is a random force with a spectral density
inferred from the memory function K(t) by standard
means. 4 The effective friction constant p, = 2p = 2 in
the chosen units, and the mass m, is set equal to zero.
The combination of memory and a moving frame
might present severe difficulty but for the fact that the
memory is short on the time scale of frame rotation.
Sequences of random displacements, with the proper
covariance computed from Eq. (1), were generated on
a tangent plane and mapped onto the spherical surface.
The calculated C'(t) = (cosH(t)), where H(t) is the
rotational displacement in time t, is an average over
such sequences, and is compared with the simulation
results.

Simulations were carried out for three levels of
motional freedom, in order to study, first, rotational
motion in frozen environments; second, rotational
equilibration of cage sizes; and third, completely free
motion. The levels are defined as follows. (1) One
rod is allowed to rotate in the rigid cage provided by its
neighbors. Translational motion is eliminated by the
assignment of a very large friction constant to the mid-
dle bead. (2) All rods in the system are allowed to ro-
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tate but not translate. (3) All rods are allowed to ro-
tate and translate, and all beads have P= l. All sys-
tems were initiated with a uniform distribution of rod
orientation and centers and were well aged before sam-
pling, except for a few special studies discussed below.

The first question to be addressed is the extent of
rotational freedom with level-1 freezing. Individual
rods in systems with small cL on occasion showed
more than one plateau in C (t), as the rod diffused out
of a partial cage, but the average C(t) always showed
steady decay to a single plateau Cp ——C(~). Equation
(1) with K (r) = Ko, an elastic restoring force constant,
was therefore used to describe level-1 motion. Ob-
served values of Cp for various rod number densities c
and rod lengths L are given in Table I. Cp and Cp~

values apply to unaged systems and wi11 be discussed
below.

The calculated values Cp and p in Table I were ob-
tained as follows. The mean square displacement
of an elastically constrained bead on the spherical sur-
face is p

—= (r ) =2/Ko. Since p is small, Cp ——1
—(0 )/2=1 —4p /L (A factor .of 2 enters because
the value of (0 ) in CP measures relative displace-
ments along a trajectory, and p measures displace-
ments from the equilibrium point established at
t = —~.) p is assumed to be related to its value po for
infinitely thin rods by p = po —d, following Doi, ' and

po is assumed to be given by

po = A/cL, (2)

where o. and dare parameters. To fit the observed p's,
it is necessary to use Eq. (2) rather than DET, which
has an additional divisor of cL on the right-hand side.
The values used for the two parameters were o =0.7
and d = 1.2. The latter value is much larger than

might have been predicted from the bond pair inter-
action potential. However, d actually refers to the pro-
jected motion on the spherical surface; the projection
stretches the effective range of interaction and makes
d a complicated average over the statistical properties

of the rod distribution. A single check of the relation
between d and the potential parameters ~ and o- was
made; d seems to change in rough rather than exact
proportion to the potential width.

Level-2 systems showed extensive and rapid orienta-
tional equilibration of the rods making up a cage, but
an extremely slow drift of the center of the cage. Be-
cause of that it seemed reasonable to neglect this drift
entirely in a first interpretation of unrestricted motion,
level 3, and to ascribe all the relaxation of K( r) to the
onset of translational motion.

In level-3 motion, all three beads on a rod are as-
signed the same friction constant, unity, and the calcu-
lated results are compared with simulations on the
basis of K(t) = Koexp( —Rt), where Ko is calculated
as described above. Both the simple decay law and the
transferability of Ko values from levels 1 to 3 are test-
ed by the comparison. According to BET, the relaxa-
tion process is induced solely by translational diffusion
parallel to the rod axis, and consequently

R =yD((/L, (3)

where D
~~

is the diffusion constant and y is a constant.
In the present work D~~ = kBT/3P in physical units, or

in the reduced units. The comparison between
theoretical and simulation results shown in Fig. 1 is
based on yD~~ =90, and on the values o =0.7 and
d = 1.2 previously inferred from level-1 results. Devi-
ations are comparable to the statistical error of the
simulations.

Given the good agreement between the simulations
and the revised calculation, it remains to rationalize
Eq. (2) and to discover the defect in DET. As before,
the orientation of a probe rod is characterized by the
position of one of its end beads on the spherical sur-
face of radius L/2 The end bead is. considered to be
caged within a circle of radius po, corresponding to an
angular rotation 0—= 2po/'L Some cL ot.her rods have
projections on the surface and might contribute to cag-
ing the probe rod. These projections are themselves

TABLE I. Simulation and theoretical plateau values C(~) for various parameter sets.
Cp and Cp plateau values apply to systems selected from the initially random distribution.
Cp and p values apply to dynamically aged systems. Cp' is calculated for true equilibrium;
CP and p are calculated for constrained (dynamic) equilibrium. Nis the number of rods in
the basic simulation cell. Standard deviations of simulation results are shown in
parentheses in units of the last digit.

System Cp Cp Cp C Cxc
P

48.53 60 100 0.956(8) 0.9599 6.01 0.83(3)
97.06 50 100 0.987(2) 0.9852 3.05 0.962(6)

113.37 46 150 0.989(2) 0.9890 2.41
145.59 50 150 0.992(1) 0.9918 2.27 0.988(2)
218.38 50 225 0.996(1) 0.9957 1.63 0.996(1)

0.87 (4) 0.8435
0.968 (10) 0.9679

0.9787
0.9882

0.996 (1 } 0.9962
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FIG. 1. Rotational time correlation functions vs t for sys-
tems 1 through 4 of Table I. Solid curves are simulation
results and dashed curves are calculated from the relaxation
model of Eq. (1).

AS = ka ln(H/0„) —N~ I~0, (4)

where l 0 is the decrease in cage size available to any
of N projections on the surface and l is a constant.
Maximization of AS with respect to 0 occurs at
0 = k /N, where k is another constant. DET
results from the supposition that N = cL . However,
only those rods lying within a sector that includes the
probe are able to recognize and equilibrate with the
probe, unless they diffuse by translational motion out
of their cages and into the proper sector. But such
motion contradicts the supposition of definite cages,
which equilibrate with respect to size but not topology
during extended intervals between cage breakup. As
the chance that a projection lies within any sector is
proportional to 0, N is proportional to cL 0, and
this gives Eq. (2) rather than DET.

The preceding considerations indicate that transla-

allowed to rotate only within the projections of cages,
namely sectors, of mean angular size 0 . As 0 in-
creases from an infinitesimal reference value 0„ the
change in entropy of the system will be

tional averaging must be suppressed in the calculation
of cage sizes. The failure of an equilibrium ensemble
to give correct cage sizes is illustrated by the simula-
tion results CP and Cp~ in Table I. CP applies to a sin-
gle rod and averages over environments; Cp~ averages
over different rods for a single configuration. For ei-
ther sampling, configurations were chosen from a uni-
form distribution of centers and orientations, and were
unaged. This ensemble should be close to the true
equilibrium ensemble of thin but finite rods. The
equilibrium cage sizes are quite different from the
dynamical values, but agree quite well with the values
CP' calculated from DET with pe= 105/c L, p = po—d, and d =0.8.

It seems necessary to conclude that the Brownian
model, and probably a real system as well, reaches
only a constrained rather than a true equilibrium distri-
bution of cage sizes, and in a sense is nonergodic.
Molecular dynamics simulations, 5 without solvent fric-
tion, do confirm DET scaling at high densities, but be-
cause D

~~
~ under the same conditions, there

seems to be no conflict. The observed failure of ergo-
dicity rests on the rapid equilibration of cage sizes, and
the slow breakup of cage topology. Mathematical
rods5 in the absence of solvent friction do not satisfy
this condition. The nature of the quasithermodynamic
transition from complete to partial equilibrium is an
interesting subject for speculation. For sufficiently
large cL and small D~~, the system seems to purchase
rotational entropy at the expense of translational.

This work was supported in part by National Insti-
tutes of Health Grant No. NIH GM 27945.

&M. Doi, J. Phys. (Paris) 36, 607 (1975).
2M. Doi and S. F. Edwards, J. Chem. Soc. Faraday Trans.

2 74, 560 (1978).
3M. Doi and S. F. Edwards, J. Chem. Soc. Faraday Trans.

2 74, 1789 (1978).
4L. D. Landau and E. M. Lifshitz, Statistical Physics

(Addison-Wesley, Reading, Mass. , 1969), Chap. 12.
5D. Frenkel and J. F. Maguire, Mol. Phys. 49, 503 (1983).

339


