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Higher-Order Squeezing of a Quantum Field
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The concept of 2nth-order squeezing of a quantum field is introduced as a natural generalization
of the usual second-order squeezing. It is shown that the processes of degenerate parametric down
conversion, harmonic generation, and resonance fluorescence all exhibit higher-order squeezing.

PACS numbers: 42.50.+q, 42.65.Bp

The subject of squeezing in quantized electromag-
netic fields has recently received a great deal of atten-
tion, ' perhaps because of the possibility of noise
reduction in gravity-wave detection. A field in a
squeezed quantum state exhibits fluctuations in one
quadrature component E& smaller than those in a
coherent state, at the cost of increased fluctuations in
the other quadrature component E2. If information
could be impressed on and extracted from the E& com-
ponent, this could prove valuable in an optical com-
munication channel. In principle, such a channel
would be more efficient than one using completely
coherent light, for which both quadrature components
fluctuate equally.

In the past, attention was always focused on the
quadratic deviation or dispersion ((AE, ) ) as indica-
tive of the field fluctuations. However, with the
development of techniques for making higher-order
correlation measurements in quantum optics, interest
naturally extends to the higher moments of the field
also. We therefore introduce a generalization of the
squeezing concept, and examine some of its implica-
tions below.

For convenience we start with the usual definitions.
Consider two quadrature components E~,E2 of one po-
larization of the electric field defined by3

E, =E + e '@+E e'~,

—E (+ )e
—i (4+ ~/2) +E ( —) i (4+ ~/2)

where E + and E are the positive and negative
frequency parts of the real field operator, and @ is a
phase angle to be chosen. The commutator

[E (+) E ( —)]—C (2)
is a real positive c number, which is finite so long as
the frequency decompositions of the fields in which we
are interested do not extend to infinite frequencies. In

t

some situations it is adequate to consider a single-

mode field, but there are problems, like resonance
fluorescence, where this is not appropriate. Then it
follows that E~,E2 are canonical conjugates satisfying
the commutation and uncertainty relations

[Et,E2] = 2iC,

(((gE )2) ((gE )2) )1/2 ~ C

where AE stands for the deviation E —(E) . The state
is described as squeezed if there is some phase angle P
for which

((AE))') ( C, (4)
and from Eq. (1) E2 can be regarded as a special case
of E&. Also, with the help of the commutation relation
(2), the normally ordered dispersion is given by

&:(&E )'.
&

= ((&E )') —C,

and this evidently becomes negative for a squeezed
state. Now (:(hE&):) vanishes for a coherent state of
the field, and it is nonnegative for any state that is
describable classically. It follows that the fluctuations
of E& in a squeezed state are smaller than in any
coherent state, including the vacuum, and that such a
state is purely quantum mechanical, without classical
counterpart.

We now make a natural generalization of the forego-
ing, by calling the state squeezed to the 2Nth order in
E, (N = 1, 2, 3, . . . , ), if there exists a phase angle g,
such that ((AE&) ) is smaller than for a completely
coherent state of the field. We have deliberately
focused only on the moments of even order, because
only in those cases is the state necessarily nonclassical.
Once again it is useful to relate these higher-order mo-
ments to the normally ordered ones. By using the
Campbell-Baker-Hausdorff identity in the form

(exp(b, E)x)) = (:exp(b,E,x):)exp( —,'x'C), (6)

expanding both sides as a power series in x and com-
paring coefficients of x', we readily obtain the relation

N(') N(4)
((b,E, ) ) = (:(4E,):) ( —,C)(:(AE,):)+ (—,C) (:(4E):)+

$t
t

(N —1)!!C' if N is even,

g (1/2) N —3/2

(:(AE))3:),3(2(1/2)N —3/2 ( 1 N 3
2 2

if N is odd.
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The normally ordered moments of the deviation all vanish for a coherent state, so that the field is squeezed to or-
der 2n if

((AEt)2n) ( (2n 1)I|Ca

For example, we have squeezing to the fourth order if

(:(AEt)4:)+6C(:(AEt)':) (0,
to the sixth order if

(:(AEt):)+15C(:(AE,):)+45C2(:(AE,):)( 0,

(9)

(10)

etc. We now examine the question of whether higher-order squeezing exists in a number of systems that are al-

ready known to exhibit second-order squeezing.
Degenerate parametric down-conversion. —In this problem, which has been treated numerous times in the past,

a strong incident field of frequency 2' interacts with a nonlinear crystal to generate light at the subharmonic fre-
quency ~. We may treat the strong incident field as classical and of complex amplitude v, but the down-converted
light of frequency co has to be treated as quantized. We therefore write for the total energy

H =tron+ hg[ve ' 'a + H.c.), (»)
where a, ci and n are annihilation, creation, and number operators for the down-converted mode, and g is a cou-
pling constant. The general solution of the Heisenberg equation of motion has the form

a(t) =cosh(2g~ ~vt)e ' a(0) —i (v/~v ~) sinh(2g~ ~vt)e ' 'a (0).
As we are dealing with a single quantized mode, we may define the quadrature component E, (t) by

Et (t) = a (t)e '~+ a (t) e'4',

(12)

(13)

so that the commutator C in Eq. (2) is unity. Then if the initial quantum state is the vacuum, we find from Eqs.
(12) and (13) that if the phase angle @ is chosen so that 2cut + 2@+vr/2 —argv = 7r, then

((Et(t) )2&) = (2n I) ice
—«go~I' (14)

Comparison with Eq. (8) shows that the parametrically down-converted field is squeezed to all even orders, not
only to the second order. The state produced in this case is similar to the squeezed state that was introduced by
Stoler, which is a special case of the two-photon coherent state of Yuen, which was also treated by Mollow.

Harmonic generation. —The process in which an incident laser beam of the fundamental frequency co interacts
with a nonlinear medium to produce the harmonic at frequency 2~ is already known to squeeze the fundamental
mode to the second order. The Hamiltonian

A

H = trcu n t + 2f con 2 + hg (a 2a t + H.c.)

has the short-time solution for the fundamental mode a
&
(t):

at(t)e' '=a&(0) —2igta &(0)aq(0)+2g t [n2(0)a&(0) —
2 nt(0)a&(0)]+0(gt) .

(1S)

If we define E, for mode 1 as in Eq. (13), and take the
initial state to be

~ v), ~ vac) 2, in which
~ v) &

is the
coherent state of complex amplitude v, we find to or-
der (gt ~v~) that

((AEt) ) =1—2g t ~v~ cos2(argv —p),

((AE&) =3 —12g t ~v~ cos2(argv —P).
It follows that the choice argv —@= n m. , which makes
E& squeezed to the second order, also ensures squeez-
ing to the fourth order.

Resonance fluoresence from an atom We now con-.—
sider the process of resonance fluorescence from a
coherently excited two-level atom, which has been
shown to yield second-order squeezing. The positive

frequency part of the electric field at a distant point r
due to an atom at the origin that is being driven by a
laser beam at frequency cu& has the general form'

E + (r, t) =K (r)b (t —r/c) +E &~„+, (r, t), (18)

[b (t —r/c), E p„+-, '(r, t ) ] = 0, (19)

where b (t) is the atomic lowering operator and K (r)
is a geometric factor. If we are interested in normally
ordered moments of the electric field at points r where
the external field that is used to excite the atom van-
ishes, then E t„,+, (r, t) operating to the right on the
state, or its conjugate operating to the left, yields zero.
With the use of the commutation relation'
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we can then evalute normally ordered moments of E&
given by Eq. (1) as if the free field operator in Eq.
(18) were absent. With the help of the steady-state
solution"

(& (t))

——,
' n/p(I+i e)

exp [i ( —co i t + n ) ], (20)
—,
' n'/p'+1+ e'

where $1 is the Rabi frequency, 2p is the natural atom-
ic linewidth, 0 is the relative laser-atom detuning
(to& —too)/p, and n is the phase of the coherent field

that excites the atom, we obtain

ii~. i(II/P) (1+e')"'
,
' —n'/p'+1+ e'

with

ltlt = ( —to i t + n + argE —@ + tan e + 7r ) .

Also, we find

fI z/P
&El) =, '

—' II /p +1+e
while

(:E t.') =0 for n & 2.
From these results we eventually obtain

(21)

(22)

(23)

(:(AE,):)+6C(:(AE,):)=
—'n'/p' +I +e'

x

i 1~ i'(n/p)'(I + e') cos'y

( —,
' Il'/P'+ 1+e')'

1+0 cosp +C 1—2

—,
' Ii /p +1+e

2(1+e )cos Q
—' Il /p +1+e

Now it has been shown that the choice Q = n 7r togeth-
er with the condition —, II'/p ( 1+ e ensures squeez-
ing of the second order, although the amount by which

( (b,E, ) ) is squeezed is always very small. If we
make —, II /p sufficiently small, then the first term on
the right of Eq. (24) can be made as small as desired,
while the second term is negative, so that squeezing of
the fourth order is realized. Actually, a more careful
consideration of the magnitudes of the two terms
shows that the second term generally dominates over
the first when —, 0'/p ( 1+e . Therefore, the condi-
tion for second-order squeezing also ensures fourth
order —and even sixth order —squeezing, although the
amount of the squeezing is always very small.

These examples all show that higher-order squeez-
ing should be no more difficult to realize the second-
order squeezing in some systems, although neither will
be easy in practice. Indeed, a larger fractional re-
duction of the higher moments ((4E&) ") (n & 1)
than of the second moment is achievable in principle,
so that higher-order squeezing may be particularly in-
teresting from the point of view of noise reduction.
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