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Randomly placed impurities that alter the local exchange couplings, but do not generate random
fields or destroy the long-range order, roughen domain walls in Ising systems for dimensionality
«i— < d < 5. They also pin (localize) the walls in energetically favorable positions. This drastically
slows down the kinetics of ordering. The pinned domain wall is a new critical phenomenon
governed by a zero-temperature fixed point. For d =2, the critical exponents for domain-wall pin-
ning energies and roughness as a function of length scale are estimated from numerically generated

ground states.

PACS numbers: 75.10.Hk, 05.50.+q, 75.70.Kw

Let us consider an Ising ferromagnet (or unfrustrat-
ed antiferromagnet) with randomly placed impurities
at a temperature below its ordering temperature, 7T.
The impurities are assumed to generate random ex-
change couplings, but not random fields. If the effects
of the impurities are sufficiently weak, the system will
still order ferromagnetically and we may consider a
domain wall separating two domains of predominantly
“up” and ‘‘down’> magnetized spins, respectively.
The impurities break the translational symmetry of the
system and will tend to pin such a domain wall in cer-
tain favorable locations where the exchange couplings
are weaker than average.

The Hamiltonian of our system may be written as
H = H,. + Hiy,p, where

Hyye=—J 2 SiSj )]
(i)

is the Hamiltonian of a pure, nonrandom Ising system
and H;,, contains the effects due to the random im-
purities. The local equilibrium position of a domain
wall in such a random magnet is determined by a
compromise between H,, which tries to minimize
the total (d —1)-dimensional area of domain wall, and
Hinp, which wants the domain wall to deviate from
flatness in order to pass through the locations where it
has the lowest local energy. The impurity part of our
Hamiltonian may be written as

Himp= (2) AJUs,Sj, (2)
i

where the [AJU} are randomly distributed. Our results
will apply for any distribution of the random couplings
AJy; provided that the disorder has only short-range
correlations and is not so strong as to destroy the fer-
romagnetic or antiferromagnetic ordering at low tem-
peratures. This includes the cases of dilution and sub-
stitution of negative couplings. In this paper we ad-
dress the following questions about domain walls in
such random-exchange Ising systems: How rough are

they? Do the impurities succeed in pinning them? If
so, what are the energy barriers hindering their
motion? The last question is important in the under-
standing of the kinetics of domain growth, which is a
process that can be studied experimentally and is dis-
cussed at the end of this paper.

Some answers to these questions have recently been
obtained for domain walls in random-field Ising sys-
tems,'™ where Hipn,= 3, A;s; and each k; is random.
Here we are not considering random-field or other im-
purities which couple directly to the local order param-
eter, but only impurities that couple to the local energy
and therefore preserve the up-down Ising symmetry.
An example of such a system is a dilute antiferromag-
net in zero magnetic field. The simple Imry-Ma-type
arguments! 3> which can be used in the random-field
case cannot be carried over to this problem because
the energy is not a slowly varying function of the
domain-wall position.

A summary of this paper and its results is as follows:
First, we treat the impurities as a perturbation on a
domain wall in a pure system. This analysis shows that
in a continuum model, weak impurities will roughen
the domain wall even at zero temperature in systems
with dimensionality d < 5. (On a lattice for 3 < d <5
the wall may or may not be rough, depending on the
strength of lattice effects.) We also show that the pin-
ning energies hindering domain-wall motion diverge at
long length scales for 4 > 3. Secondly, we numerical-
ly generate the ground states of domain walls in finite
two-dimensional (d=2) systems. We find that the
domain wall is very rough, with the transverse devia-
tions from a straight line of a segment of interface of
length L scaling as L¢ with {= %, and the pinning en-
ergies scaling as LX with X = +. This scaling behavior
shows that the pinned domain wall is a new sort of
critical phenomenon, governed by a zero-temperature,
strong-pinning fixed point. Presumably a similar
behavior, but with different exponents, also occurs for
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domain walls in random-exchange Ising systems in
d =3 and perhaps d =4.

We first consider a continuum model of a domain
wall in the presence of impurity pinning. The domain
wall is assumed to run on average parallel to a refer-
ence plane. Let z(x) be the position of the domain
wall measured normal to this reference plane at the
point specified by the (d —1)-dimensional vector x.
At sufficiently long length scales (long compared to
the bulk correlation length)® the relative energy of the
domain wall is given by the continuum interface Ham-
iltonian

Ho= [ a4 'x[+o| V212 + V(x,2(0))], 3)

where o is the domain-wall stiffness and V(x,z) is the
local domain-wall energy, which is a function of the lo-
cal impurity density and positions and is random with
only short-range correlations. The two terms in this
interface Hamiltonian derive from Hp,. and Hiy,,
respectively. In the pure system V(x,z) is a constant
(which we may set equal to zero) and the ground state
of (3) is a perfectly flat domain wall with z(x) con-
stant. For d > 5 the presence of weak impurities does
not roughen the ground state of the domain wall; the
height-difference correlation function

G(x;—x;) = ([z(x)) —z(x,)1?) (4)

may be calculated perturbatively to first order in
((8¥/9z)?) and the result is nondivergent for
|x; —X,| — . This calculation is essentially identical
to that of Imry and Ma’® for systems with » =2 com-
ponent spins, which shows that ferromagnetic ordering
in such systems is not destroyed by a weak random
field for d > 4. The angular brackets in (4) denote
averaging over the ensemble of random impurity posi-
tions. For d =35, on the other hand, infrared diver-
gences are obtained in this perturbative treatment,
which suggests that the ground state of (3) is rough.
By rough we mean that G(r) diverges for |r| — 0. A
renormalization-group treatment of this problem, done
perturbatively in e=5—d, finds that G(r) ~ |r|2¢(®
where ((d) = Ce for e — 0 with C =0.21.7 Extrapo-
lating this to d =2 gives { ==0.63, which is surprisingly
(perhaps fortuitously) close to our numerical result
{(d=2) = %, discussed below.

At nonzero temperature the domain wall in the pure
system is rough for d =3 because of thermal fluctua-
tions.® The Hamiltonian (3) with V(x,z) =0 is a fixed
point of a renormalization-group (RG) rescaling under
which the coordinate x is rescaled to x/b, and z to
z/b3~D/2. We may then ask if the impurities are
relevant or irrelevant at this fixed point. If we start
with a weak impurity potential with only short-range
correlations (which we approximate with delta func-

tions),

< V(xl,zl) V(XQ,22)> = AS(Xl —X2)8(21 —22), (5)
then simple power counting shows that the impurities
are relevant for d > %, with A increasing by a factor of
5834972 ynder the RG rescaling. (A more careful
momentum-shell integration RG gives the same
result.) This shows that for d > 3 the pinning of the
domain wall to impurities becomes stronger as one
looks at longer length scales and the long-distance
behavior is presumably governed by a strong-pinning
fixed point.

We now turn to the case d =2, where the domain
wall is simply a path z(x), so that finding the ground
state of the domain wall reduces to an optimal path
problem. Let us define E(x,zq;x5,z;) as the ground-
state energy of a domain wall running from (x,z;) to
(x3,2z5). Then for any x’ between x; and x,

E(x1,21;%3,27) = min [ E(x,z3x",2")
+E(x",2",x2,27)1.  (6)

This equation is the basis of both a transfer-operator
approach due to Derrida and Vannimenus® by which
we numerically generate ground states, and a real-
space RG.

It is instructive to formulate a decimation-type real-
space RG for this problem. (Note: We have not actu-
ally implemented this RG; we are using it to motivate
scaling assumptions.) The function

E,(x;z1,2)) =E(x,z;x +a,z5) @)

is distributed according to a functional, P{E,(x;
z1,23)}, which is assumed to be known. Note that
E,(x +a;z,,z3) is independent of E,(x;z;,z,) and has
the same distribution. Thus the distribution for
E,,(x;z1,z3) as obtained with (6) is a kind of non-
linear ‘“‘convolution’’ of P {E,} with itself. Let us then
rescale the system by a factor of 2 along the x axis and
a factor of 2¢ along the zaxis, and rescale energy by 2%,
defining the renormalized energy function as

Ea’(x',zl,zz) =2_XE2a(2x;2€21,2422), (8)

where the overall additive constant in the energy,
which clearly scales as 2!, is assumed to be zero. At
the fixed point governing the pinned domain wall the
resulting distribution of E, is identical to P {E,}.

In order to investigate this new fixed point we have
numerically generated ground states of a lattice ver-
sion of our model (3) in two bulk dimensions. The
lattice Hamiltonian is

Hy=23 (L1200 —z(x + D] +Ad(x2(x))], (9)
where z and x are now integers. This is a solid-on-

solid model in which the domain wall consists of seg-
ments of unit length parallel to the x and z axes with
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overhangs forbidden.® The energies of the segments

parallel to the x axis, AJ,(x,z(x)), are random with
no correlations from one location (x,z) to another.
The energies of all segments parallel to the zaxis are J,
per unit length and not random. We have also exam-
ined models with random energies for these segments;
as expected by universality, we find no change in the
asymptotic scaling behavior. Here we only report
results for the simpler model (9).

We use (6) as a transfer operator® to find ground-
state energies and positions for long segments of
domain walls. For our model (9)

E(x,zyx +1,23) =J,|z, — z3] +AJ(x,2,), (10)

so that if we know E(0,z;x,z,) it is a fairly simple
operation to generate E(0,zy;x +1,z3) by (6). This
method has been used to generate exact ground states
of domain walls in systems of sizes up to 4000 lattice
units long and 2500 wide. If one end of a domain-wall
segment of length L is held fixed at, say (x,z) = (0,0),
then the ground state of this segment [subject to the
constraint z(0)=0] is given by the minimum of
Ey(L,z)=E(0,0;L,z) with respect to z. Let us define
Zzmin(L) as the value of z(L) in this ground state;
Zmin (L) is the position of the free end of the domain-
wall segment. Since the other end of the segment is
held at z(0) =0, the quantity

Go(L) = ([zmin(D)1?), an

is a height difference correlation function closely relat-
ed to G(L) as defined in Eq. (4). A measure of the
pinning energy scale for a domain-wall segment of
length L is

Eims(L) = {{([ Emin (L) 12)
—[ (Emin(L)>]2}l/2, (12)

where E (L) =Eo(L,zmin(L)) is the ground-state
energy with the one end held fixed. By our scaling
form (8), we expect that Go(L) —L? and E,, (L)
~LX

In Fig. 1 we show W(L) =[Go(L)1? and E.ms(L)
for systems with J,=1 and AJ, distributed uniformly
in [ —/12,+/12] so that ((AJy)?) =4. Two-parameter
fits to a power-law form give ¢{=0.66 £0.02 and
X=0.33 £0.01. We have examined other distributions
of AJ,, both two valued and continuous, and find the
exponents to be independent (as expected) of the de-
tails of the distribution. Since we are dealing with a
fairly simple low-dimensional critical phenomenon we
suspect that the critical exponents are exactly the sim-
ple fractions { =% and X = ¥, but a solid argument for
this eludes us.

To obtain a scaling relation between the two ex-
ponents ¢ and X, let us consider the average domain-
wall energy (Ey(L,z)), for a domain wall constrained
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FIG. 1. The root mean square transverse deviation from
flatness, W (L), of the ground states of segments of domain
wall of length L (upper data), and the energy scale E, (L)
as defined by Eq. (12) (lower data). Fits with straight lines
on the log-log plot give exponent estimates {=0.66 +0.02
and X=0.33 £0.01, respectively. The straight lines shown
here have the slopes given by the conjectured exact ex-
ponents §=-§- and x=%—. The deviations from a straight
line for small L that can be seen in the data for W(L) are
presumably due to corrections to scaling. The statistical er-
rors are less than or equal to (for large L) the size of the
points on this graph.

to have slope z/L, for large L and z of order L% The
domain-wall energy per unit length should be analytic
in z/L so that (Ey(L,z) ) may be expanded as

(Eo(L,2)) = (Eo(L,0)) +orz*/2L
+0(z*/L3), 13)

where op is the domain-wall stiffness at long length
scales (fully renormalized). By scaling we also expect
that

(Eo(L,2) —Eo(L,0)) =~ LXE(z/L%) (14)

for large L, where E(w) is a scaling function. Equat-
ing (13) and (14) in the limit L — oo, along with the
assumption { =<1 (which is clearly correct here), then
yields 2{ —X =1, a simple exponent relation which is
certainly consistent with our numerical results. This
scaling relation between the exponents { for length
transverse to the domain wall and X for relative energy
can be readily generalized to other dimensionalities,
where it becomes 2{—X=3—d.

One reason for interest in the pinning of domain
walls is the role that domain-wall motion plays in the
kinetics of ordering.” After the system is cooled below
its ordering temperature it locally orders into domains
separated by domain walls. The average linear domain
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size, R (1, grows with time, ¢, because of domain-wall
motion that eliminates the smaller domains, leaving
larger ones.? To anneal out the domains of size R re-
quires the movement of domain-wall sections of linear
dimension and radius of curvature of order R. If this
requires surmounting energy barriers of magnitude
Ey(R), then the time scale for this activated process is
of order explE,(R)/kgT]. If E,(R) —RY for large
R, as suggested by scaling, then the typical size of the
domains left at long times grows as R (9 ~ (logz) /¥,
as compared to R (7) ~~/t for pure systems.” This
domain size, R (), could be observed as a nonequilib-
rium correlation length in a scattering experiment.

In order to relate this exponent i to those discussed
above, { and X, let us follow an argument used by Vil-
lain® for the random-field problem and consider a
large, approximately spherical domain of radius R. A
section of linear dimension r of the wall of this domain
typically deviates from being flat by at least the order
of r?/R. If this section of domain wall is in its ground
state (conditioned on its edges being fixed) then it will
deviate by order r¢ from flatness. Thus the roughly
spherical domain wall can readily get hung up in a state
for which all sections of size r < RY2~9 are in their
ground states and the total domain energy can then be
lowered only by the movement of larger sections of
domain wall inwards. The sections of linear dimension
re ~ RYQ=0 that are the easiest to move are roughly
flat (if we assume that { <1) so that the energy bar-
riers hindering their motion should scale as rX. There-
fore the barrier E,(R) for the annealing out of
domains of linear dimension R scales with exponent
¢=X/(2—¢). With our numerical results this gives
¢ = 1 for the two-dimensional system. For d — 5 we
expect that {— 0 and X — 2 so that ¢y — 1. Since ¢
presumably vanishes at the lower critical dimension of
this problem, namely, d=%, a reasonable interpola-
tion suggests that 1 =y > % for d =3; the first-order
€ expansion’ gives y(d =3) =0.55. It will be interest-
ing to see if the logarithmic domain growth,
R (0 ~ (log) ¥, that we predict can be observed in
nonequilibrium experimental or simulated model sys-
tems. !0

The energy barriers E,(R) that enter in this
kinetics-of-ordering argument are barriers against
movement of the domain wall by continuous deforma-
tion. In our numerical work on the two-dimensional
systems we did not calculate these barriers; the energy

scale defined by Eq. (12) represents the typical varia-
tion of the ground-state energy of a domain-wall seg-
ment as one end point (i.e., boundary condition) is
moved. Although the end is moved continuously, en-
tire segments of domain wall move discontinuously in
this procedure. Thus these energy scales represent
lower bounds on the true energy barrier for continu-
ous motion of the entire wall. However, we can also
estimate an upper bound by considering, in a hierarch-
ical fashion, motions of shorter and shorter segments
of domain wall. This upper bound scales with the
same exponent X, which suggests that X = —;— is in fact
the correct exponent for the true energy barriers for
d=2.

We would like to thank Ingo Morgenstern for per-
forming initial numerical calculations and Daniel S.
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Note added.—The transfer operator for the interfa-
cial energies for d =2 is closely related to Burger’s
equation!! with noise. This system has been studied
by Forster, Nelson, and Stephen'? whose results are
equivalent to { =% and X =+ for our exponents. This
will be discussed in future work.’
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