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Quasiperiodic Patterns
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We present here a general framework to produce quasiperiodic tilings and more general quasi-
periodic patterns in n dimensions corresponding to a finite number of local neighborings around
each point. In particular, we give simple descriptions of the Penrose tilings of the plane and of a til-
ing of the three-dimensional space which exhibits an icosahedral symmetry. The Fourier transform
of this last pattern is derived and shows a striking similarity with the electron-diffraction images ob-

tained for a recently discovered alloy of Al and Mn.

PACS numbers: 61.50.Em, 61.55.Hg, 64.70.Ew

We present here a very general method to produce
quasiperiodic tilings in arbitrary dimension. We gen-
eralize ideas already used by de Bruijn,! Mackay,? and
Kramer and Neri® and we systematize the so-called
projection method. The main idea is to generate such
tilings of a p-dimensional space E as the projection,
from a higher-dimensional space R” of a p
dimensional surface made up of a suitable union of p-
facets of a regular n-dimensional lattice L in R”.

Actually, let L= Z" be the r-dimensional lattice in
R" generated by the natural basis (ey,...,e,), and let v,
be the unit cube. Let EC R" be a p-dimensional sub-
space of R”, and assume that E does not contain any
point of the lattice, except the origin.

There are () different p-facets (the p-dimensional
analog of an edge) of y, containing the origin. These
facets project on E on a priori (}}) different p-volumes.
A tiling of E by means of these volumes is obtained in
the following way: Let S=E ++v, be the open strip
generated by shifting y, along E, the claim is that the
union of all p-facets entirely contained in S is exactly a
p-dimensional surface of R”", the projection of which
on Egives the announced tiling.

If E’ is the orthogonal complement of E in R”, the
projection K of the strip on E’' is just the projection of
the unit cube y,. Moreover, if ENL=(0), the pro-
jection of the lattice L in E’ is one to one. Thus the
set of vertices of the quasiperiodic tiling corresponds
to the set of points of L that project in E’ inside K.

Now, if Eis invariant under the action of a subgroup
G of the point group of the lattice L the a priori ()
different tiles fall into classes, in such a way that the
tiles of each class have the same shape, and are per-
muted by G.

The set of p-volumes around a given vertex x of the
tiling is completely specified by the set of correspond-
ing p-facets falling in K around the corresponding
point x’ in E’. Note that no (p +1)-,(p +2)-, ...,
n-facet of L can project in E’ strictly inside K.

The two rhombs of the original Penrose tiling (see
Refs. 1 and 2 and Penrose?* and Gardner?®), with angles
27/5, 3w/5 for the thick one and #/5, 4w/5 for the
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thin one, suggest application of this method in RS.
Let L= Z%C R with the natural basis (e},e;,e3,e4,€5)
and let A be the principal diagonal of the lattice. L is
invariant under the action of the group G of rotations
around A, generated by the circular permutation g
g(e)=e4+. R® falls into three G-invariant sub-
spaces: two two-planes P; and P, and of course A.
Note that P,NL=(0).

The lattice L projects on P; and P, on dense Z-
modules L; and L, generated as the linear combina-
tions (with coefficients in Z) of the projections of
ey, ..., es which point to the five vertices of a cen-
tered regular pentagon. The projection of L in P+ A
is contained in a set of equidistant planes parallel to P,.
The ten two-facets of ys project in P; on the two Pen-
rose rhombs, each one being repeated five times.

The strip is defined by S=P;+ys={£ +¢|
£ €P,, ¢ € ys), where ys is the open unit cube of R°.
S projects in P, + A on a ‘‘rhombic icosahedron’ with
20 faces and 22 vertices. More generally the strip can
be translated in R® Let S,=P; +vs+rwhere ¢is any
vector of P, +A. The projection in P, +A is now
K,=K +t The claim is that for any # a nonperiodic
tiling of P, is obtained by projecting S, "L on P;: The
points thus obtained are in one-to-one correspondence
with those of K, NL’' in P, +A. Since no three-facet
can project in the interior of K,, it can be seen that the
projection of S;NL is the set of vertices of a tiling of
P, by means of the two Penrose tiles.

The original Penrose tiling is defined by means of
“forcing rules”” which rule out a certain number of lo-
cal patterns around a point. Actually seven situations
are allowed, up to rotations or inversion. In our
framework, and for a given tiling, the set of rhombs
around a point x; in Py is completely specified by the
set of two-facets around the corresponding point x’ in
P,+A which fall inside K,, and the set of rhombs
around a point x; of the tiling in P; is completely
specified by the set of three-facets of K, containing the
corresponding point x’ in P+ A. The partition of K,
given by intersections of all three-facets yields a
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decomposition into cells, each one corresponding to a
specific type of pattern in P;. The actually realized
patterns of the tiling are those for which the corre-
sponding cells are intersected by L.

The original Penrose tilings are obtained for all S,
with ¢t € P,: The cells of K, which intersect L’ corre-
spond to the seven possible situations. More general
tilings are obtained for a generic translation ¢, and nine
new situations can occur, including for instance the
ten-pronged star. Actually, the set of nonisomorphic
tilings can be labeled by (P,+ A)/L’, an uncountable
set.

Notice that such a construction of the Penrose til-
ings and of their generalization does not involve any
reference to their self-similarity properties, as in Refs.
4 and S and Levine and Steinhardt.®

The same general method can be worked out in view
of the icosahedral symmetry. The simplest construc-
tion involves R® endowed with an orthogonal
representation of the icosahedral group G, which per-
mutes Z¢ and is such that RS falls into two G-invariant
three-spaces, £ and E’, with nonequivalent irreducible
representations of G.

The twenty different three-facets of L= Z6 fall in E
(and E’) on two different rhombohedra, with the same
facets (with angles arctan2 and w—arctan2), each of
which is repeated ten times. These are the rhombohe-
dra considered by Mackay? and Kramer and Neri.}
The open strip is defined by S = E + y¢ where vy is the
open unit cube of RS. It can be seen that the projec-
tions w(L) on E and #'(L) on E’ are Z modules
which are dense in Eand E'. If ey, ..., eg is the na-
tural basis of R®, w( tey), ..., a( teg) point to the
twelve vertices of a regular icosahedron centered at the
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FIG. 1. A section of the three-dimensional tiling orthogo-
nal to a fivefold axis: a generalized Penrose tiling.
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origin of Eandsodo@w'( +e;), ..., 7'( teg) in E'.

The projection #(SNL) in E is in one-to-one
correspondence with the other projection @’'(SNL)
=KNL’' where K=wu'(y¢) is a rhombic triacon-
tahedron. The same arguments insure that no four-
facet of Z% can project inside K and that a nonperiodic
tiling of F by means of two different rhombohedra is
obtained. The local pattern around a given point x in
FE is completely specified by the set of three-facets
around the corresponding point x’' in E’. As in the
Penrose case, a cell decomposition is obtained which
yields 24 possible patterns of rhombohedra around a
point. In particular, the central cell of the triacon-
tahedron corresponds to a twenty-pronged star with
the icosahedral symmetry.

We present in Figs. 1, 2, and 3 three sections of this
tiling, which are associated to axes of order 5, 3, and
2, respectively. The cuts, which are made along two-
dimensional surfaces taken from two-facets of the til-
ing, yield quasiperiodic tilings of the plane. Actually,
the first section, carried out orthogonally to a fivefold
axis, projects on a generalized Penrose tiling. The two
other sections project on quasiperiodic tilings of the
plane associated with threefold and twofold sym-
metries. As in the two-dimensional case, the strip can
be translated, which yields an uncountable set of non-
isomorphic tilings.

One of the most striking features of all these tilings
is their quasiperiodicity, in the sense that for any til-
ing, the measure defined by a Dirac delta at each ver-
tex is quasiperiodic: Its Fourier transform is a sum of
weighted Dirac measures with support in the Z module
generated by the projections of the basis vectors of the
lattice. For instance, in the icosahedral case, the
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FIG. 2. A section of the three-dimensional tiling orthogo-
nal to a threefold axis.
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FIG. 3. A section of the three-dimensional tiling orthogo-
nal to a twofold axis.

Fourier transform is the restriction of a six-
dimensional Fourier transform which can be easily ob-
tained as the convolution of the dual lattice of Z% by
the Fourier transform of the characteristic function of
the strip. Moreover, all tilings have the same Fourier
transform, up to a phase at each point, in such a way
that they are identical from a ‘‘diffractional’ point of
view.

Let v =Xs3;¢ z69¢ be the measure associated to

SN Z% where Xy is the characteristic function of the
strip in R®. Then n =3, . ,Xs(£)84() is the measure
associated to the tiling in E. If £ = (x,x’) is the orthog-
onal decomposition of £ € R® in E and E’, and if
k= (kk’) is the corresponding decomposition in the
dual space, the Fourier transform of » is given by
i(k)=v(k0). Now v=Xg*3 ., and since
Xs(xx")=Xrr(x') where Xzg is the characteristic
function of the triacontahedron in E’, Xg(kk')
=8(k)X7r(k’).  Finally, 7a(k)=3, . ,8(k—1)
xXrr(—1') where A =([I’) is the decomposition of A
in the dual space.

We give in Figs. 4, 5, and 6 the computed Fourier
transforms of a tiling, in the three planes respectively
orthogonal to symmetry axes of order 5, 3, and 2.
These patterns are astonishingly similar to the electron
diffraction images obtained by Shechtman er al.” from
rapidly cooled alloys of Al and Mn.

The general framework presented in this Letter can
be generalized in many ways. For instance, if the con-
dition which insures an exact tiling of the space is re-
moved, more general quasiperiodic patterns are ob-
tained. On the other hand, the projection space and
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FIG. 4. Fourier transform in a plane orthogonal to a five-
fold axis. In this figure and in the following ones, the circles
are centered at the location of the Dirac measures and the
radii are proportional to their amplitudes above a given
threshold.

the strip may have different orientations: The first
one specifies the tiles while the second one dictates
their relative abundance. As a matter of fact, the
quasiperiodic tilings thus obtained can be seen to inter-
polate between periodic ones, which correspond to ra-
tional orientations of the strip.

Notice that the quasiperiodicity of the tilings is in-
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FIG. 5. Fourier transform in a plane orthogonal to a
threefold axis.
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FIG. 6. Fourier transform in a plane orthogonal to a two-
fold axis.

dependent of the fact that neither the pentagonal nor
the icosahedral symmetry is compatible with periodic
ordering. In fact, the sections corresponding to the
twofold and threefold axes (given in Figs. 2 and 3)
show quasiperiodic tilings of the plane while these
symmetries are of crystal type.

As a final remark, let us stress the idea that the con-
struction presented herein works in any number of
dimensions and with any lattice. For instance, it is
easy to see that another type of quasiperiodic tiling of
the space with icosahedral symmetry can be obtained
from R!9, the icosahedron being replaced by a dode-
cahedron.

Centre de Physique Théorique is Groupe de Re-
cherche No. 048 associé au Centre National de la Re-
cherche Scientifique.

Note added.— A recent preprint of V. Elser, kindly
transmitted to us by D. Gratias, presents essentially
the same results as ours.

IN. G. de Bruijn, Nederl. Akad. Wetensch. Proc. Ser. A
43, 39-66 (1981).

2A. L. Mackay, Physica (Amsterdam) 114A, 600-613
(1982), and Kristallografiya 26, 910 (1981) [Sov. Phys.
Crystallogr. 26, 517 (1981)].

3P. Kramer and R. Neri, Acta. Crystallogr. Sec. A 40,
580-587 (1984).

4R. Penrose, Math. Intelligencer. 2, 32-37 (1979).

5M. Gardner, Sci. Am. 236, No. 1, 110 (1977).

6D. Levine and P. Steinhardt, Phys. Rev. Lett. 53, 2477
(1984).

D. Shechtman, 1. Blech, D. Gratias, and J. W. Cahn,
Phys. Rev. Lett. 53, 1951-1954 (1984).

2691



