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The glass transition has historically been viewed as an anomaly involving the specific heat of su-
percooled liquids. It is also associated with a divergence of the relaxation times for liquid rear-
rangements. We have developed a new spectroscopy to study the frequency dependence of the
specific heat of liquids which connects these two approaches. We report measurements as a func-
tion of temperature of the distribution of relaxation times which are directly responsible for the

glass transition in glycerol.

PACS numbers: 64.70.Ew, 65.20.+w

When a liquid is supercooled below its equilibrium
freezing temperature it can either nucleate into a crys-
tal or, if cooled sufficiently far, it can form an amor-
phous solid called a glass. The transition between the
supercooled liquid and the glass, the glass transition,
has been treated by various theoretical approaches and
different authors have suggested that this is a first-
order,! second-order,2 or even a third-order® phase
transition. Still others have claimed that there is no
true phase transition at all.* In real experiments the
underlying thermodynamics are masked by kinetic ef-
fects, so that static equilibrium measurements cannot
be obtained as a result of diverging relaxation times.

The specific heat, ¢,, is of particular importance
since it is the basis for the Kauzmann paradox,’ one of
the clear indications that some sort of transition must
occur between the liquid and the glass. The specific
heat of the supercooled liquid is greater than that of
the crystal. If this situation were to continue to a low
enough temperature the entropy of the supercooled
liquid would become less than that of the crystal. In
all known cases the glass transition intervenes and ¢,
drops at a slightly higher temperature than where this
catastrophe would occur.

We have studied the frequency dependence of the
specific heat through the glass transition. We apply a
small-amplitude sinusoidal heat flux to the sample and
measure the temperature response at the same fre-
quency v. In the limit » — 0, this is the conventional
specific heat. By varying v we can measure how the
heat relaxes into the different modes of the sample. In
most cases one would not expect ¢, to depend on fre-
quency. The one exception observed so far is the
low-temperature specific heat of glasses® where tunnel-
ing levels dominate the response. One might expect
that supercooled liquids would also show a frequency-
dependent ¢, in the glass transition region.”

We emphasize that our measurements are not the
same as those that look at the cooling-rate depen-
dence® of ¢,. In those measurements one is measuring
the temperature at which the sample falls out of equi-
librium® at any given cooling rate.! The departure

from equilibrium always happens just before one
reaches the ‘‘interesting’’ region of temperature. In
our case the cooling rate is always very slow and our
measurements are only performed while the sample is
in an equilibrium liquid state. The frequency-
dependent specific heat, ¢, (v), is a linear susceptibility
describing the response of the system to arbitrarily
small perturbations away from equilibrium. By scan-
ning a wide range of frequency we are measuring the
‘“‘specific-heat spectrum’’ of the system.

The traditional adiabatic technique!! for measuring
specific heat requires that the sample be extremely
thin, so that the time of heat diffusion across the sam-
ple is short compared to the measurement time. The
low thermal diffusivity (~ 10~3 cm?sec) of liquids
places a severe constraint on the highest useful fre-
quency for this technique. (For a thickness d=0.1
mm, v < 1 Hz).

To circumvent this problem we have developed a
new, nonadiabatic technique to measure c¢,. By using
the same electrical resistor as thermometer as well as
heater and by using a simple heater geometry, we
eliminate the need for a very thin sample and extend
our frequency range to much higher frequencies. The
heater, of resistance R, is a thin metal film evaporated
onto a glass substrate. The heater is immersed in a
bath of the liquid sample to be measured. We pass a
sinusoidal current, i, at frequency v/2 through the
heater. (We use this convention for the frequency of
the current oscillations since, as we will show below,
the specific heat will be measured at frequency v.)
The power dissipated, i*R, has both a dc component
and an ac component at frequency v. The former sim-
ply produces a constant temperature gradient in the
sample cell, while the latter sends diffusive thermal
waves into the surrounding medium at frequency v.
The solution to the one-dimensional diffusion equa-
tion shows that the temperature oscillations at the
heater have a magnitude proportional to (vcpx)‘ll 2
and a phase lag of 45° with respect to the heat oscilla-
tions, where ¢, and « are the specific heat and thermal
conductivity of the medium surrounding the heater.
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In order to measure these temperature oscillations
we exploit the temperature dependence of the resis-
tance of our thin metal heater. The resistance has a
small component oscillating at v proportional to the
temperature oscillations. If we now measure the vol-
tage across the heater, we obtain a large component
oscillating at v/2 and a small 3v/2 component due to
the mixing of current at v/2 with resistance oscillations
at v. We subtract out the large v/2 component by put-
ting the heater into one arm of a Wheatstone bridge.
We measure both the magnitude and phase of the 3v/2
component with a lock-in amplifier. We have covered
4.5 decades of frequency with this technique,
0.2 Hz < v < 6 kHz, and we plan to extend the mea-
surements to lower frequencies in the near future.

Note that this method measures the product CpK
rather than just ¢,. However, k changes very slowly!?
near the glass transition temperature, 7,, while ¢,
drops sharply over a range of several degrees. Thus,
changes in the product ¢,k are dominated by the
behavior of ¢,.

We have studied the glass transition in glycerol. It is
good glass former and it has been widely studied by
other techniques. 7T, of glycerol (determined by dif-
ferential scanning calorimetry measurements) is about
180 K, and the Kauzmann temperature, Tk, where the
extrapolated liquid entropy crosses that of the crystal,
is about 134 K.13

Figure 1 shows c,«x vs temperature for three dif-
ferent frequencies. Near T, ¢,k drops by a factor of
2, which is what we expect from measurements of ¢,
alone. The temperature at which ¢k drops depends
strongly on the measurement frequency, indicating
that the characteristic relaxation times in the liquid in-
crease as T'is lowered.

Because there is dispersion in the real part of ¢,
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FIG. 1. The real and imaginary parts of ¢k (in

J2/cm?*-sec-K2?) in glycerol as a function of temperature.
The measurement frequencies are (triangles) v =0.62 Hz,
(squares) v =234 Hz, (circles) v=1100 Hz. The lines are
guides for the eye.

there must also be an imaginary part, ¢y, as required
by Kramers-Kronig relations. Figure 1 shows the first
direct measurements of this quantity which peaks at
the glass transition. Normally the imaginary part of a
linear susceptibility signifies a net absorption of energy
by the sample from the applied field. But during a
complete cycle of the specific-heat experiment there is
no net exchange of energy between the sample and the
surrounding heat bath. However the entropy of the
bath does change during a complete cycle. If the ex-
periment is carried out at a nominal temperature 7T
with small oscillations of magnitude &7, then the net
increase of entropy of the heat bath during one cycle is
wc,'(8T/T)* The second law of thermodynamics in-
sures that ¢,">0. The heat oscillations thus lag
behind the temperature oscillations. This is consistent
with hysteresis seen in cooling-rate studies.?

To show the specific-heat spectra of the sample, we
plot the real and imaginary parts of ¢,k vs logov for
three different temperatures in Fig. 2. The data show
the characteristic form of all relaxation processes. The
low-frequency limit of ¢,k reflects the contribution of
all the degrees of freedom in an equilibrium liquid.
The high-frequency limit reflects only the contribution
of the fast modes. We have fitted the peaks in the im-
aginary part with several of the common phenomeno-
logical functions used to fit dielectric relaxation data.
Our peaks are about 1.6 decades wide, so that a Debye
peak (1.14 decades wide) will not fit the data. A
Cole-Cole fit is fair, but the experimental peaks are
asymmetric, whereas the Cole-Cole peaks are sym-
metric. The best fits were obtained with the
Williams-Watts function, i.e., the Fourier transform of
the response dlexp(—1t/7)Bl/dt The value of B is
0.65 £0.03 for all temperatures. This function gives a
better fit than the Davidson-Cole function which has
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The real and imaginary parts of ¢,k (in
J2/cm* - sec- K?) in glycerol as a function of frequency. The

FIG. 2.
temperatures are (triangles) 7=203.9 K, (squares)
T=211.4 K, and (circles) T=219.0 K. The solid lines are
fits to the data with a Williams-Watts function with 8 =0.65.
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been used to fit the dielectric susceptibility data on gly-
cerol.'* Using the parameters taken from these
Williams-Watts fits, we also fitted the real part of ¢,k
[the additive constant ¢,k (v =co) is the only undeter-
mined parameter]. The high quality of these fits
shows that our data are consistent with the Kramers-
Kronig relations.

Figure 3 shows the peak frequency obtained from
Fig. 2 vs T~1. We have fitted the data with two dif-
ferent functional forms. The first is a Vogel-Fulcher
law, v =vgexpl — A4/(T— Ty) 1, used historically to fit
a wide range of glass-transition data. We obtained the
values vo=4x10'* Hz, 4 =2500 K, and T,=128 +5
K. These values of vy and A are physically reasonable
given a free-volume picture of liquid relaxation.!> The
value of T, is very close to Ty, the temperature
beyond which the liquid cannot be supercooled accord-
ing to the Kauzmann paradox (134 K). These
numbers are close to those obtained from dielectric
data. The widths of our peaks however are somewhat
broader than those reported in those experiments.!*

The second fit is a scaling law v =vo[ (T — Ty)/ Tp1%,
predicted by several recent hydrodynamical theories*
of the glass transition. We obtain vo=4x 101" Hz,
a=15.0+0.6, and Ty=169 +1 K. The theories
predict a=1.8 to lowest order; however, they claim
that higher-order corrections could change this value
considerably. Because of the large discrepancy in T,
between the two fits, we hope to distinguish between
them by extending our measurements to lower fre-
quency.

In summary, we have developed a ‘‘specific-heat
spectroscopy’’ that can be used to measure both the
real and the imaginary parts of the dynamical specific
heat over a wide frequency range. These are linear-
response measurements of a sample that is arbitrarily
close to equilibrium. We have used this technique to
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FIG. 3. The peak frequency, on a log scale, vs T~! from
the fits to the imaginary part of ¢,«. The solid line is actual-
ly two indistinguishable fits to these data with a Vogel-
Fulcher law and with a scaling law. The parameters for the
fits are given in the text.
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measure the relaxation spectra of glycerol near T,.
The glass transition is observed to be simply the slow-
ing down of a narrow distribution of modes as the tem-
perature is lowered. The data are fitted well with a
Williams-Watts distribution with 8=0.65. Over our
4.5 decades of frequency, the data can be fitted with
either a Fulcher law or a scaling law; however, the ex-
ponent in the latter fit is anomalously large.

The specific-heat-spectroscopy data look similar to
dielectric data, suggesting that one relaxation mecha-
nism is responsible for all of the observed phenomena.
However, specific-heat spectroscopy has certain
unique and attractive features. First c,,(v) is closely
tied with the thermodynamics of the system. The
Kauzmann paradox shows that ¢, must drop at a tem-
perature above Tx. Thus our Fulcher law cannot
change into Arrhenius behavior as has been observed
in some viscosity data.® Second, the specific heat cou-
ples to all the modes in the system. This is not true of
dielectric or mechanical susceptibilities. We are thus
guaranteed that we are measuring all the relevant re-
laxations in the liquid. It is therefore not surprising
that the peaks in ¢,” are wider than those observed in
dielectric studies. Indeed, in some cases where the
important modes do not couple to electric or strain
fields, the specific heat might be the only low-
frequency spectroscopic tool available. One can apply
this technique to study relaxation behavior in a variety
of solid and liquid systems.
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