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It is shown that the absolute free energy of lattice spin systems can be calculated directly by a
novel application of Monte Carlo sampling of finite-size dependence. Results are obtained for the
two- and three-dimensional Ising models at T, and are consistent with recent finite-size scaling-
theory predictions. The free energy is in excellent agreement with Onsager’s exact solution for two
dimensions and with series expansions for three dimensions. The Uy is measured for the first time.
Results are consistent with the proposed universality.
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Despite the extensive applications and contributions
made by Monte Carlo simulations! to the understand-
ing of a wide range of physical problems involving
many degrees of freedom, a long-standing problem of
obtaining directly the absolute free energy by efficient
Monte Carlo sampling continues to be of significant in-
terest! to the understanding of phase transitions, criti-
cal phenomena, lattice gauge theory, and similar prob-
lems. Standard techniques! for obtaining free energy
or related quantities such as entropy! %3 have been the
application of the thermodynamic integration method,*
which depends on linking the point of interest to re-
gions of the phase diagram where free energy can be
calculated accurately by other approximate methods.
Although such methods usually involve rather large
numbers of Monte Carlo simulations, there are a
number of advantages,* such as being able to obtain
various properties of interest for the region of the
phase diagram covered by the paths of integration.
These methods, however, cannot be used to obtain in-
formation on the singular part of the free-energy den-
sity f; at the critical point. In this paper, I propose a
solution to this problem by showing that the absolute
free energy of lattice systems at criticality can be calcu-
lated directly by a novel Monte Carlo method. The
method has been applied to the ferromagnetic Ising
model at criticality and is in excellent agreement with
Onsager’s exact solution’ for two dimensions and the
high-temperature series expansion results for the sim-
ple cubic (sc) and body-centered cubic (bcc) lattice for
three dimensions. The finite-size scaling amplitude
U, for the singular part of the critical free energy® is
measured for the first time for both sc and bcc lattices.
It is consistent with the recent proposal of universality
for such amplitudes. The method has also been ap-
plied to the Ising model away from criticality with ex-
cellent agreement with the exact solution and will be
presented elsewhere.

The method is based on two observations: First, the
free energy for sufficiently small systems can be calcu-
lated exactly, and second, Monte Carlo sampling can
be used to obtain directly the finite-size dependence of
the absolute free energy. Although the first observa-
tion may be considered trivial, the second observation
when shown to be practical is novel and quite useful.
The method is also especially relevant in view of re-
cent discussions on universal critical amplitudes® relat-
ed to the singular part of the free energy near the criti-
cal point. These authors define the singular part of the
finite-size free-energy density for an N lattice in d
dimensions as

£ (T,h,N)=f(T,h,N)— f..(T.h), 1)
with
S(T,h,N)=F(T,h,N)/(KTN?.

f(T,h) is the analytic “‘background’ part of the
free-energy density. In the asymptotic limits at 7, and
zero field, it was proposed that

Sfs=UyN™4, )]

with scaling amplitude U,. With the present method,
one can obtain the finite-size dependence of the free
energy and calculate Uy for the first time.

For simplicity, I describe the method in two dimen-
sions; extensions to three dimensions are straightfor-
ward. We consider a nearest-neighbor ferromagnetic
Ising model on a 2N X 2N square lattice. The system is
considered under two sets of boundary conditions.
The first is the usual periodic boundary conditions for
a 2N x 2N lattice and will be denoted by the Hamiltoni-
an H,y. In the second set, we divide the 2N X 2N lat-
tice into four separate N X N square lattices, each with
the standard periodic boundary conditions, and denote
the composite system by H . The partition functions
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of the two systems are related by

Zg, B Trexp(—BHy)
Zy,, Trexp(—BHy)

=(exp[—,3(17N—H2N)]>szv’ @)

where 8=1/kT and ()y,, is an ensemble average

generated by H,y. The free-energy-density difference
between a 2NX2N and an N X N lattice can be ob-
tained as

In(expl —B(Hy— Hox) 1)
4N? ’

This allows the calculations of size dependence of the
free-energy density directly as a Monte Carlo ensem-
ble average. The extension to three-dimensional sc
would be to partition a 2N X 2N X 2N system into eight
N %X N X N separate systems. The bcc lattice is treated
as a sc lattice with a two-sites basis. Although except
for very small systems, such ensemble averages cannot
in practice be evaluated directly by standard Monte
Carlo methods,! I have been able to obtain very effi-
cient sampling even for large systems (24 x 24) by ap-
plying the ratio method.” The ratio method is based
on obtaining the ensemble average as a ratio of two
ensemble averages. Equation (4) can be rewritten as®

(exp[—B(ﬁN~H2N)])H2N
B (glB(Hy—Ho)) iyy
<g[.B(H2N_HN)]>F1N '

4)

Sfon—In=

(5)

where g(X) denotes the Fermi function, g(x)
=1/[1+exp(x)]. The advantages of this method
have been discussed in detail by Bennet’ and will not
be considered here. For three dimensions, even the
ratio method failed to be efficient and multistage sam-
pling is needed.’ For example, Eq. (3) is rewritten for
a three-stage sampling,
Zg, Zm, Z, Z,.

H H
= , (6)
Z, Zy. Zn,

Zy N

where each ratio can be evaluated by the ratio method.
For example,

z, (glBGH—HM) .

= . 7
Z, (glB(H'—H)I) @

H' and H'' are suitable Hamiltonians chosen such that
the ratics can be evaluated efficiently. I have used up
to six stages with the intermediate stages generated by
H’, which interpolates between Hy and H,y, as
H'=a'H),y+ b’ Hy and (a’,b’) varies between (0,1)
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and (1,0). Typically, each sampling is averaged over
about 50000 Monte Carlo passes per site and standard
block averages are used to obtain the error estimates.
For the six-stage sampling, the intermediate Hamil-
tonians H’ are chosen for computational convenience
to be (a',b’)=1(1.0,0.0),(0.7,0.3),(0.4,0.6), (0.2,
0.8),(0.1,0.9),(0.0,1.0)]1. The size dependences for
the square, simple cubic, and body-centered cubic lat-
tices are exhibited in Fig. 1. Observe that the size
dependence can be fitted as N~ 9 for the three lattices
with d the dimensionality. This is consistent with
scaling-theory predictions.® I have also obtained the
finite-size scaling amplitudes U,. (See Table I.) Note
that the sc and bcc cases are equal within the error es-
timates, thus providing the first Monte Carlo evidence
that the finite-size scaling amplitudes of the singular
part of the free energy are universal.

To obtain the absolute free energy, we combine the
finite-size dependence results with an exact solution of
a 4x4 or 2x2x2 lattice to obtain the free energy
for each size considered. The thermodynamic limit
fx(T.,0) is obtained by assuming that Egs. (1) and
(2) hold, which is exhibited in Fig. 1 for the range of
sizes considered. The results are summarized in Table
I with comparisons to exact results and high-
temperature series expansions. The agreements are
excellent.!?

I have shown that the finite-size dependence of the
free-energy density for lattice systems can be evaluat-
ed directly by the Monte Carlo method at 7, and have
obtained the finite-size scaling amplitudes for the
singular part of the free-energy density U, for the first
time in two and three dimensions. By combination of
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FIG. 1. Finite-size dependence of free-energy density

from Monte Carlo simulations. The solid line is a fit to the
N~4scaling prediction. dis the dimensionality.
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TABLE 1. Summary of results for the scaling amplitude U, and free-energy density f,.
for two- and three-dimensional Ising models with comparison to exact results fey . (Refs.
5,10) and high-temperature series expansion fe, (Ref. 11) at criticality. The critical cou-

plings for the sq, sc, and bcc lattices are 0.44068 . . . , 0.2217, and 0.157 37 and were taken
from Refs. 5 and 12.

UO f mc f exact f ser
sq —0.0669 +0.006 —0.9283 +0.002 —0.9296 . ..
sc —0.657 £0.03 —0.7776 +£0.001 —0.777 87
bee —0.643 +0.04 —0.7552 £0.001 —0.75403

the finite-size dependence with exact solutions to
small systems, the absolute free-energy density can be
evaluated directly without thermodynamic integration.
The results are in excellent agreement with exact solu-
tions or high-temperature series expansions and con-
sistent with finite-size scaling theory. The proposed
method is thus shown to be useful and extensions to
other lattice models should be possible. The actual
computational efforts needed for accurate results will
depend on the particular model and dimensionality.
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