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We introduce a new random walk with the property that it is strictly self-avoiding and grows for-
ever. It belongs to a different universality class from the usual self-avoiding walk. By definition
the critical exponent y is equal to 1. To calculate the exponent v of the mean square end-to-end
distance we have performed exact enumerations on the square lattice up to 22 steps. This gives the

value v=0.57 £0.01.

PACS numbers: 05.40+j, 64.60.—i, 82.35.+t, 82.70.Gg

In this Letter we introduce a new self-avoiding walk
(SAW) with the property that it continues forever.
The construction of such a walk is of great physical in-
terest in connection with the kinetics of irreversible
growth processes' such as polymerization and kinetic
gelation. In order to study these systems it is impor-
tant to include the self-avoiding condition so that un-
physical multiple occupancy of a site cannot occur. On
the other hand, the model should possess the property
that it can grow indefinitely in order to describe a
kinetic process. Presently there is no truly kinetic walk
which is completely self-avoiding and grows indefinite-
ly. This model describes the diffusion-limited growth
of a polymer in a dilute solution under the condition
that the relaxational dynamics of the polymer chain is
much slower than the typical growth rate of the pro-
cess. The monomer diffuses from the outside to the
growing end of the chain. This walk should not be
confused with the recently introduced true SAW 2
which also continues forever. However this walk is al-
lowed to violate the self-avoiding condition in order to
continue. This leads to an upper critical dimension
d.=2 for the true SAW and consequently gives
mean-field behavior in two and higher dimensions.
This is certainly a drawback if one wishes to describe a
physical process.

For the indefinitely growing SAW (IGSAW) the
excluded-volume condition cannot be violated;
nevertheless, the walk proceeds forever. We obtain
this effect because the IGSAW recognizes cages, no
matter how large. This property of the IGSAW makes
it possible to generate many long self-avoiding chains
very rapidly. As shown below, this enables us to study
the asymptotic properties of the SAW in great detail.

To generate this walk we first search for the unoccu-
pied nearest-neighbor (nn) sites. Secondly, we check
whether any of these sites leads into a cage. If this is
the case this particular site is not considered as a possi-
ble jump site. Then, we define the probability of going

to one of the jump sites as
p=1/(number of jump sites). (1)

In Fig. 1 we show these features of the IGSAW.
The irreversible character of this walk can also be de-
duced immediately from this figure. In order to recog-
nize whether a new possible step leads into a cage it is
sufficient (for d=2) to analyze all the sites which
form the smallest closed path in the forward direction,
starting at the end of the walk. For the square lattice
this path also includes two next-nearest-neighbor
(nnn) sites, as illustrated in Fig. 2. On the triangular
lattice only nn sites are relevant, but on the honey-
comb lattice this closed path even includes a next to
next-nearest-neighbor site. These considerations are
only of a local nature. In addition to that we need glo-
bal information about the walk, namely, the winding
number. For the square lattice one simply counts the
number of 90° angles along the chain. A clockwise an-
gle corresponds to —1 and a counter-clockwise angle
to + 1 (see Fig. 2). The sum then indicates which way
is outward, away from the interior of a closed loop
which can be formed in the following nn or nnn step.
Through this information of the conformational struc-
ture of the walk we are able to exclude nn sites which
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FIG. 1. One-step probabilities for the IGSAW starting
from N =0. The irreversibility is simply deduced by insert-
ing the walk direction. If the one-step probabilities differ
from the SAW value %— it is given (see also Fig. 4).
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FIG. 2. A simple example illustrating the decision pro-
cedure whether a step leads into a cage or not. The circles
denote the sites which are checked in the analysis. The signs
denote whether the angles correspond to +1 or —1. The
“plus loop”’ allows for two new- configurations each with
probability +.

give rise to trapping. Clearly this procedure is in-
dependent of the size of the loop to be formed. Usual-
ly the SAW condition, a long-range memory effect
along the chain, leads to a relevant short-range interac-
tion in space. For the IGSAW, the winding number
now leads to both a long-range interaction along the
chain and in space, even though only nearby sites are
analyzed.

To appreciate the importance of this global property,
we can study the number of different walks, analyzed
as an IGSAW or as a SAW, without considering the
different probabilities a given configuration can have.
From this point of view, the IGSAW’s form a subset
of all SAW’s. Since each IGSAW grows indefinitely,
the procedure searches automatically for self-avoiding
paths which can belong to an infinitely long SAW.
The IGSAW’s of a given length N then form from all
SAW’s just those configurations which occur as inner
parts of an infinitely long SAW. As discussed below,
the different asymptotic behavior is then a conse-
quence of the kinetic construction algorithm, which
results in different probabilities for IGSAW configura-
tions. As mentioned above it is this property of select-
ing infinite self-avoiding paths which makes it possible
to perform a biased Monte Carlo sampling for the usu-
al SAW. First one generates an IGSAW of a fixed but
arbitrary length N. After the completion of this path
one goes back to the origin and recalculates the one-
step probabilities as if it were a SAW. In this way one
can study the short-range correlation between ele-
ments of an infinite polymer.3

One property of this IGSAW is easily derived. Let
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FIG. 3. Plot of V(N) vs In(N +2/N) for (R*) (crosses)
and (R?) (dots) see Eq. (6).

Py({r}) denote the probability of a given configura-
tion {r} of Nsteps. Then because the walk never ends
we have for the partition function Z (N)

Z(N)=2[,]PN{1'}=1. » 2)

This is a consequence of Eq. (1) from which we see
that

p=1 3)
all jump sites
Therefore, by analogy to the usual SAW one gets for
the critical exponent y

y=1L 4

The exponent v, which describes the behavior of the
mean-square end-to-end distance (R?) cannot be
found so readily. We have performed an exact
enumeration* of up to 22 steps on the square lattice as
a first attempt to calculate this property. From this
enumeration we have calculated the number of chains,
the partition function Z(=1), the mean-square end-
to-end distance (R?(N)), and the fourth moment
(R*(N)). In a following paper® we will publish the
detailed results of the enumeration together with a
more extensive analysis of Monte Carlo data for longer
chains. To calculate v from this series we assume the
scaling form®’

(R*(N))=AN*(1+BN~44CN~'..) (5

and a similar expression for (R*(N)). We then find
an estimate for v (N) from®

v(N)=+In{RAN+ )/R* (M) }In{(N+)/N}=v—$ABN A— LCN~'+. . .. (6)

With the assumption that the correction to scaling ex-
ponent A is larger than unity, we find from a plot of
v(N) against 1/ N the value for v as the intercept with
the v(N) axis as 1/N=0. Because of the odd-even
fluctuations typical for this lattice, the best results are
obtained for i=2. In Fig. 3 we give these extrapola-
tions for the second and the fourth moment, the result
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! being (d=2)

v=0.57 £0.01. (7

To justify this procedure one, of course, has to check
if A> 1. This can be done by plotting the quantity®
In{v(N) —v} against InN. If A > 1, one gets a slope
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FIG. 4. Simple example showing the space-filling capabili-
ty of the IGSAW compared to the SAW. The dotted bonds
give directions which are allowed only for the SAW and thus
increase the probability of the particular IGSAW
(Pigsaw({1}) > Psaw({r})). The irreversibility is illustrat-
ed by the one-step probabilities. The values in brackets cor-
respond to the inverted direction.

equal to — 1; otherwise one finds a slope —A. As one
already could have guessed from the linear behavior of
the plots in Fig. 3 one finds that this slope equals — 1
and thus that A > 1, confirming the validity of this ap-
proach. Also from these observations we think that
our confidence estimate is justified. This is consistent
with the analysis of [see Eq. (6)]

D(N)=v(N)—v(N=2)
=A2ZBN-1+8) 4L CN—2, (8)

The linear behavior of D(N) vs 1/N? for N=14
strongly suggests A > 1. Note that in Eq. (8) only the
corrections to scaling occur.’

At first glance these results might appear somewhat
surprising compared with the SAW result v=0.75.%
One could, for instance, anticipate a larger v due to the
fact that the IGSAW can easily create larger holes.
However, these holes are also present for the SAW.
In addition, for those walks which start to enter a hole
the IGSAW always finds a way out, creating fairly
dense configurations while the SAW, as a result of its
innocence, can easily end up in a trapping situation,
leaving large holes. Figure 4 gives a simple example
illustrating the space-filling capacity of the IGSAW. It
is clear from this picture that the IGSAW can never
cover the lattice completely because an empty lattice
site leading to a cage will always be avoided. Thus in 2
dimensions it does not behave like a random walk and
it must have a critical dimension larger than 2.

The extension of our model to higher dimensions is
far from trivial and unfortunately we have not yet
found a simple algorithm for it. However, it is clear
that in order to define a three-dimensional cage one
needs nonlocal information about the past of the

chain, whereas in two dimensions the winding number
is a local property of one site only. It is also very diffi-
cult for a walk to form a three-dimensional cage, since
there need be only one empty site on the surface for
the walk to escape. This greatly enhances the space-
filling capacity compared with the two-dimensional
IGSAW. The large change in the value for the ex-
ponent v in two dimensions (SAW:0.75-1IGSAW:0.57)
suggests a v value very close to + (SAW:~0.59) in
three dimensions. This suggestion together with the
result y =1 (by construction) leads one to speculate on
the possibility of a critical dimension d. =3 for this
walk. In the context of polymer physics, this is of in-
terest for the #-point problem, where d. =3. Ford =2
there exist theoretical and experimental values for v
ranging from 0.505 to 0.56.° It would be very interest-
ing to check whether there is a relation between the 6
point and the IGSAW in order to explore a construc-
tion scheme for a  polymer.

After presenting this work! we learned that the
IGSAW exactly describes the cluster-hull properties of
a percolating cluster.!® This makes it possible to study
the surface properties of clusters, a subject which has
attracted considerable attention recently.!!

1Proceedings of the Conference on Kinetics of Aggrega-
tion and Gelation, Athens, Georgia, 1984, to be published.

2D. J. Amit, G. Parisi, and C. Peliti, Phys. Rev. B 27, 1635
(1983).

3]. des Cloizeaux, J. Phys. (Paris) 41, 223 (1980).

4P. Grassberger, Z. Phys. B 48, 255 (1982).

SK. Kremer and J. W. Lyklema, to be published; J. W. Ly-
klema and K. Kremer, to be published.

6Z. V. Djordjevic, 1. Majid, H. E. Stanley, and R. J. dos
Santos, J. Phys. A 16, L519 (1983).

7For a more general treatment, see V. Privman, Physica
(Utrecht) 123A, 428 (1984).

8B. Nienhuis, Phys. Rev. Lett. 49, 1063 (1982).

9R. Vilanove and F. Rondelez, Phys. Rev. Lett. 45, 1502
(1980); A. Takahashi, A. Yoshida, and M. Kawaguchi, Ma-
cromolecules 15, 1196 (1982); A. Baumgirtner, J. Phys.
(Paris) 43, 1407 (1982); A. L. Kholodenko and K. F. Freed,
J. Phys. A 17, L191 (1984); M. J. Stephen, Phys. Lett. 53A,
363 (1975).

10A. Weinrib, and S. Trugman, private communication,
and to be published.

l1See for instance, R. M. Ziff, P. T. Cummings, and
G. Stell, J. Phys. A 17, 3009 (1984); R. F. Voss, J. Phys. A
17, L373 (1984).

269



