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Lattice Results on the Meson Electric Form Factor
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A calculation is outlined and results presented for the electric form factor, measured at two
values of the momentum, of the pseudo-Goldstone meson within the staggered formulation of lat-
tice fermions.
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As numerical simulations of quantum chromodynamics (QCD) on the lattice improve it is necessary to devise
calculations which provide more detailed tests of the theory. One important area for study is hadron internal struc-
ture. ' 3 Electromagnetic properties can provide clean and experimentally accessible information for this purpose.
In this Letter we discuss the lattice calculation of the vector-current —hadron vertex function and present our first
results for the pseudoscalar meson electric form factor.

The staggered scheme for putting fermions on the lattice is used. ~ The fermion action in terms of single-
component fermion fields X, X and gauge-field matrices U~ takes the form (color indices suppressed)

SF———,
' g„„n„(x)[X(x) U (x)X(x+ a ) —X(x+ a ) U„(x)X(x)]+ma Q„X(x)X(x) (1)

where a is the lattice spacing and a„ is the unit vector in the p, direction (p, = 1, . . . , 4). The quantity
o. (x) = ( —1) ", where („=g„&„x„. Local phase transformation of the fermion field, X(x) e'" t~

X( x),

X(x) X(x)e '" ",yields a vector current

j„(x)= —5SF(x)/hb, cu(x)

~(x) [X(x) U~(x) X(x+a, ) + X(x+ a

(2a)

(2b)

where bee(x) =co(x+a ) —cu(x). This is conserved
in the sense that the ensemble average
(y„[j (x + a„)—j„(x)] ) = 0.

The interpretation of the fermion degrees of free-
dom in (1) is usually given in terms of flavored quark
fields defined on hypercubes in the lattice. The had-
ron correlation functions, to be identified with contin-
uum matrix elements, are constructed from interpolat-
ing fields made up from these nonlocai flavored quark
fields. It has been shown that the two-point function,
relevant for mass calculations, can be cast in a form
that can be constructed using only local X-field bilinear
operators. 6 7 This is, of course, advantageous for nu-
merical calculations. We have shown that our three-
point function can also be calculated in a form that in-
volves only local X-field bilinear operators as interpo-
lating fields. The derivation will be given elsewhere
and here we only quote the final results used in our
numerical study.

(4)

For t, t, —t„» 1, we have
r

E a
—E,a

A (p, q;t„t„) z(p)z(p') (1+e ") (1+e ' ) ' -«~, -~„& +e & "e ' ' " (~+ (p) Ip(0) l~+ (p')),
(1+e ") (1+e ' )

We want to construct current matrix elements for
flavor nonsinglet meson states with nonzero electric
charge. Specifically, we consider the pseudo-
Goldstone meson associated with the exactly con-
served (in the zero-mass limit) flavor nonsinglet axial
current. s The usual flavor structure associated with
the staggered fermions is not useful for constructing
charged states since an "electric charge" defined
within these flavors is not conserved 8The . conserved
vector current, (2b), if interpreted as nondynamical
electric charge, assigns identical charges to all four
staggered fermion flavors. We therefore introduce two
sets of X fields (labeled by u and d, with charges q" and
qd, q"—q"= 1) from which we construct charged-
meson interpolating fields and the conserved elec-
tromagnetic currents j"(x) and j"(x), based on (2b).

The three-point function which we calculate is (with
color indices suppressed)

p (p, q;t, t ) = (0Ig, e '&'*( —1)*X (dzt, ) X( zt, )g„'e~'" (p«) X(o)X (o) I0), (3)

where p(x, t ) = Iq"j4 (x) +/qdf4d(x) and ( —1)' means ( —1) ' ' '. We also need the two-point function

G(p;t ) = (OIQ e '~'*( —1)'X (z, t, )X"(z,t, )X "(0)X (0) I0).
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where

(E~+ E,)
(~+ (p) l p(0) I

~+ (p') ) = 't j, +(q),
p

(6)

lO

O
I—

U
lO

2

with E~= [p +M )' and p'=p —q. We use
l~+ (p)) to label the pseudoscalar-meson ground state
with unit charge and degenerate (light) valence
quarks. The quantity F(q) is the electric form factor
and the quantity Z(p) is related to the two-point func-
tion by

G(p;t, ) =—.Z(p) exp( —Ept, ).
Ez

Numerical calculations were done in a model for
QCD with use of only SU(2) color to save on comput-
ing time. The lattice size was 102&&20' 16 with the
current-carrying momentum in the 3 direction.
Thirty-two gauge-field configurations were prepared by
a heat-bath Monte Carlo techniqueto in quenched ap-
proximation and the Wilson gauge-field action" at
P = 2.3. The gauge fields were constructed on a
103& 16 lattice and then doubled in the 3 direction.

Quark propagators were calculated by the conju-
gate-gradient algorithm. '2 Antiperiodic boundary con-
ditions were used on fermion fields in the spatial direc-
tions. However, the fermion couplin'g was put equal to
zero across the time boundary of the lattice. This is
similar, but not identical, to the boundary condition
used by Bernard et al. t3 The advantage of this choice

is that we see simple exponential falloff of the correla-
tion function over a large time interval. In calculation
of the form factor the problem of nonvacuum contam-
ination can be corrected by the taking of a geometric
mean of correlation functions calculated for appropri-
ate momenta.

The three-point function was calculated as the
derivative of a two-point function with the charge
operator acting as a source. ' ' This means that in the
two-point function one of the quark propagators is cal-
culated not with the action SF of Eq. (1) but with

5) =5„—n g e''t'"p(x, t„).

The derivative with respect to n (at a = 0) gives the
three-point function. This derivative is obtained nu-
merically by calculation of two-point functions at n = 0
and n = 0.05. A check of this procedure at q = 0,
where the three- and two-point functions are related, 9

indicates that our derivative is good to within a few
percent.

Propagators, with and without the source, were cal-
culated for three different spatial starting points in
each of the thirty-two gauge-field configurations. All
calculations were done for the quark mass parameter
ma =0.025. The data summed over all configurations
are shown in Fig. 1 for the two-point function G(Q;t, )
and the three-point function 2 (0, q;t„t ). The three-
point function was calculated at two values of momen-
tum, for q =m/10, the lowest nonzero value on our
lattice, and for q = m./5. The charge operator is located
at t„=4. This actually means that it involves lattice
points at time steps four and five. From the two-point
function we infer that the pseudoscalar meson mass
Ma =0.44+0.01. As expected from (5) the three-
point function falls with the sample slope as G (Q; t, )

The form factor is extracted from a combination of
two- and three-point functions at large time separa-
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FIG. 1. Plot of the two-point function G(0;t, ) and the
three-point function 3 (0, q, t„t, ) (for q = vr /10 and
q =sr/5) as functions of t, The solid line.s are single-
exponential fits.
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FIG. 2. Plot of the electric form factor I' vs the Min-
kowskian four-momentum transfer squared (in lattice
units). The solid line is a monopole form factor
(1+0 a jX ) ' with X = 1.05.
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tions:
r

A(0, q;t„t )A(q, q;t„t„)
G(0;t, ) G(q;t, )

(Eq+ M)

2(E,m) '/'

This not only simplifies the calculation but also
corrects for nonvacuum contamination in the Z factors
of (5) and (7). The results for F, plotted as a function
of Minkowskian four-momentum transfer squared
Q2 = q —(Eq —M), are shown in Fig. 2. These
results were obtained by an averaging of (9) over time
steps t, numbers five to nine. The errors are statistical
only and were calculated by combination of the uncer-
tainties of the two- and three-point functions including
the covariances between these quantities. ' The solid
line in Fig. 2 is a monopole form factor'7
(1+ 02az/X2) ' with A.2=1.05. The conversion to
physical units depends on the calculation of the lattice
spacing. Using the value a =0.16 fm obtained by
Gutbrod and Montvay, 's we infer an rms charge radius
from the monopole form factor of about 0.38 fm. The
older value a = 0.23 fm based on the evaluation of the
Creutz ratioto would give 0.55 fm.

The results presented here are, in a sense, prelimi-
nary. A number of important systematic effects
remain to be studied. These include the extrapolation
in quark mass to physical values and the approach to
the continuum. As far as finite lattice size effects are
concerned, none were found in the detailed study of
the meson spectrum in SU(2) color by Billoire et al. 7

This is consistent with our finding that the meson is a
compact object.

In conclusion, we have shown that it is feasible to
calculate directly an important physical observable, the
electric form factor, for a meson on the lattice. Our
results provide evidence that the quarks in a lattice
meson are indeed localized in a compact object signifi-
cantly smaller than the lattice volume.
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