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Dynamics-Independent Null Experiment for Testing Time-Reversal Invariance
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It is shown that it is impossible to construct, in any reaction in atomic, nuclear, or particle phys-
ics, a null experiment that would unambiguously test the validity of time-reversal invariance in-
dependently of dynamical assumptions.
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The testing of the validity of symmetry laws and,
specifically, of time-reversal invariance has remained a
center of attention in nuclear and particle physics. In
the study of particle reactions, there are three conceiv-
able ways to construct such tests. The first kind in-
volves the measurement of any observable for a partic-
ular reaction (differential cross section, some polariza-
tion quantity, spin correlations, etc.) and its compar-
ison with the corresponding observable for the time-
reversed reaction. This method encounters consider-
able experimental difficulties, since the two reactions
in question may be drastically different in terms of in-
strumentation, possibly carried out on completely dif-
ferent kinds of accelerators, and hence the relative
normalization of the two measurements is very diffi-
cuit to determine with more than a moderate degree of
accuracy. Such tests, therefore, can at present be car-
ried out at all but the lowest energies to an accuracy of
5%, and even at the lowest energies, for nuclear -reac-

tions, ' only to an accuracy of 0.5%. A proposal for
molecular beams2 claims 0.1% or so. Even then, prob-
lems and uncertainties might arise, as shown by a
specific instance in the past history of this approach.

The second method involves a reaction which is
"self-conjugate" under time reversal, that is, a reac-
tion which under time reversai goes into the same
reaction. For such instances time-reversal constraints

result in relationships between different observables. 3

For example, in pp elastic scattering, there is such a re-
lationship between the simple polarization (P) and the
simple asymmetry (A).

In such instances we at least deal with only one reac-
tion, but even so, the techniques of the two experi-
ments yielding the two measurements with a relation-
ship between them may be quite different; thus prob-
lems of normalization still exist. Therefore such tests
are also limited in accuracy, though perhaps not as
much as those of the first type. The rough order of
magnitude of 1% might be ascribed to the present-day
accuracy of such tests.

The third type of test one could conceive of is a null
experiment, that is, some observable which must van-
ish when time-reversal invariance holds. Precedents
for such null experiments to test conservation laws ex-
ist, for example, in the case of parity conservation,
where the component of the simple polarization in the
reaction plane must be exactly zero, completely in-
dependent of dynamics, when parity conservation
holds. 4 This fact has been used in one form or another
to explore the tiny admixtures of weak-interaction ef-
fects in strong interaction phenomena. Experimental-
ly, the very attractive feature of such tests is that a null
experiment can be performed to a very high degree of
accuracy, such as one part in 10, 10, or perhaps even
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107, vastly superior to the accuracy levels indicated for
the first two types of tests.

Such null experiments have not been carried out on
particle reactions in connection with time-reversal in-
variance, and hence attention would naturally be
focused on the formulation of experiments of this type
for the testing of time-reversal invariance or measure-
ment of tiny time-reversal-noninvariant effects.

The aim of the present note is to show that the
above described objective is impossible. In other
words, we will show that it is impossible, in any parti-
cle reaction, to construct a null experiment in a
dynamics-independent way that would test time-
reversal invariance by itself, i.e. , to find an experimen-
tal observable the vanishing of which would allow us
to conclude unambiguously that time-reversal invari-
ance holds independently of dynamical assumptions.

It is important to emphasize the phrase "dynamics
independent.

"If one is allowed to make some assump-
tions about dynamics, even if very mild ones (e.g. "no
final-state interaction", or "a Hamiltonian of a certain
form, " or "interaction of a certain tensorial type,

"
etc.), it may be possible to circumvent the above
theorem. Indeed if for example the interaction is elec-
tromagnetic, the form of which we believe we know,

we may very well find experimental quantities that
must vanish. If, however, we want to be completely
free of dynamical assumptions, and argue only on the
basis of the structure of the reaction matrix as deter-
mined by general conservation laws, the above
theorem holds.

The demonstration of the validity of this theorem
will be carried out in the so-called optimal formalism5
of polarization phenomena. This is the class of for-
malisms in which the relationship between observables
and the bilinear combinations of amplitudes
("bicoms") is the simplest. The result, however,
should be independent of the particular formalism we
use.

We then start with an arbitrary reaction with two
particles in and two particles out, which is self-
conjugate under time reversal, that is, with elastic
scattering of some sort. The spins of the particles in
the reaction can be arbitrary.

Let us start with the reaction being constrained only
by Lorentz invariance, that is, let us consider the case
when we do not know whether other symmetry con-
straints (e.g. , parity conservation) hold or not. The ar-
bitrary observable in an arbitrary reaction (i.e. , involv-
ing particles with arbitrary values of spins) can then be
written5 in terms of the amplitudes as

~ ( u v H, UVHp', (coHq, A Hg )

,' KZ, Z2H„~[D (—g,u;, U)D'(o), v;0, V) + wD(co, v;, U)D" (g, u; II, V)

+ pD (g, v;, U) D'(co, u; II, V) + pwD (cu, u;, U) D'(g, v; II, V)

+ PD(g, u;, V)D'(cu, v;A, U) + PwD(, v;, V)D'((, u;n, U)

+pPD((, v;, V)D'(cu, u;II, U) + pPwD (cu, u;, V)D'((, v;II, U) ],

where H~ is the real (imaginary) part for p = +1
( —I), Zi= I+pq —p+q, Z2=1+PQ —P+ 0, w

=pq, W=PQ, and K= I unless w= 8 = —1, in
which case K = —1. The rest of the notation is as fol-
lows: D(g, u;, U) is the amplitude for the reaction
3+8 C+D, and the four indices u, U, g, and:-
denote the spin projections, possibly chosen differently
for each particle. The observables for this reaction are
denoted by( uv H~, UVHp', gcuH: 0Hg).

We will now demonstrate the nonexistence of null
experiments for time-reversal invariance in four dif-
ferent cases: (a) Lorentz invariance only; (b) Lorentz
invariance plus parity conservation; (c) Lorentz invari-
ance plus identical-particle constraints; and (d)
Lorentz invariance, parity conservation, and identical-
particle constraints. The method of proof will be the
same in all four cases. It consists of the following
steps: (1) We exhibit the constraints among the am-

D(c,a;d, b) =D'(a, c;b,d). (2)

Inserting these constraints into Eq. (1) we get for the

plitudes. (2) We substitute these constraints into Eq.
(I). (3) We write down Eq. (1) for the time-reversal
reaction. (4) We demand that the observable which is
the result of step (2) be the negative of the observable
which is the result of step (3), and show that this
demand cannot be satisfied.

Since the proof involves the comparison of a reac-
tion with its time-reversed partner, we clearly need to
consider only observables in which u = g, v = cu,

U =, and V= O. In such observables p = q, P = Q
w = 8'= + 1, Zt = Z2 = 2, K = I, and H„~ is the real
part. Furthermore, the constraints of time-reversal in-
variance in the transversity frame (which we will use
for our proof) are6
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particular set of observables we need to consider

W(uv H~, UVHP', uvH, UVHe) = 4 Re[D(uu, UU) D'(vv, VV) + D (vv, UU)D'(uu, VV)

+ 2pD ( u v, UU) D'(v u, VV) + 2PD ( uu, UV) D'(vv, VU)

+ 2pPD(uv, UV) D'(v u, VU) ].
Correspondingly, the expression for the time-reversed reaction, that is, for the reaction C+ D A + B, is

W ( u v H~, UVHP', uv H~, UVHP) = 4 Re [D ( uu, UU) D'(v v, VV) + D (v v, UU) D'( uu, VV)

+2pD(uv, UU)D'(vu, VV) +2PD(uu, UV)D'(vv, VU)

+ 2pPD(uv, UV) D'(v u, VU) ]

(3)

(4)

We are now ready to complete the proof in the four
cases mentioned above.

(a) Lorentz invariance only. —Comparison of Eqs. (3)
and (4) shows that each term in Eq. (3) is equal in
magnitude and sign to the corresponding term in Eq.
(4). Thus the two observables are not the negative of
each other, as we would have to have if we have an
observable vanishing under time-reversal invariance
and thus forming a null experiment.

We have not included, in the above, observables in
which the outgoing particle indices are not equal to the
incoming particie indices. For such observables, the
time-reversed reaction would involve a different ob-
servable, so that the criterion used above [Eq.
(3) = +Eq. (4)] could not apply. The way for such an
observable to vanish would be for the eight individual
terms in Eq. (1) to cancel one another. We see, how-
ever, that, in particular, the first term cannot ever be
canceled by any of the other terms. This conclusion
holds even if the values of some or all of the indices
are taken to be equal to each other. This can be easily
established by an inspection of Eq. (1).

(b) Lorentz invariance together with parity
conservation. (1) The con—straints of parity conserva-
tion on the amplitudes in the transversity frame are6

D(c,a;d, b)

( 1)a+ b+ c+ d+2{s~+sD)DP( d b) (5)

We see, therefore, that about half of the amplitudes
vanish identically, while half of them remain un-
changed. (2), (3) The above constraints mean that in
Eqs. (3) and (4) some (or all) of five terms vanish.
The others, however, will continue to be equal to the
corresponding terms in the other equation, as they did
in the case of Lorentz invariance alone, and hence the
proof given for Lorentz invariance alone applies here
also.

(c) Lorentz invariance together with identical particle-
constraints. (1) Here we cons—ider the special reaction
A + 3 C+ C and impose the constraints stemming
from the identical nature of the two initial and two fi-

nal particles. These constraints on the amplitude are

D(c,a;d, b)

( 1)z(a+c)+2(sq+ c) t( ) (6)

(2) We now substitute these constraints into Eqs. (3)
and (4). We continue to get pairwise equality between
the corresponding terms and hence we c'ontinue to fail
to obtain an observable that vanishes as a result of
time-reversal invariance and thus could serve as a null
experiment.

(d) Lorentz invariance together with parity conservation
and identical particle c-onstraints. Compare—d to (c)
above, the only difference here is that some of the am-
plitudes vanish and hence some of the five terms (or
all of them) also vanish because of parity conservation.
The remaining terms, however, will continue to equal
the corresponding terms in the other equation both in
magnitude and in sign; hence we still fail to have an
observable which vanishes as a result of time-reversal
invariance and thus could serve as a null experiment
for testing the symmetry. This completes the proof.

It was necessary to repeat the proof in each of the
above four cases because the more information we
have on the validity of various conservation laws other
than time-reversal invariance the more constrained the
M matrix becomes. Hence, it would have been con-
ceivable that an experiment becomes a null experi-
ment when we know that, e.g. , parity is conserved but
is not a null experiment when that extra knowledge is
not available.

The above result depends crucially on the experi-
mental observables being bilinear functions of the am-
plitudes. There is one unique relationship that circum-
vents this type of dependence, namely, the optical
theorem (based on probability conservation) in which
something bilinear in amplitudes is related to some-
thing linear in amplitudes, although only in a special
way (namely, utilization of the imaginary part of the
forward reaction amplitude). This circumstance has
been used by Stodolsky7 to propose a test of time-
reversal invariance which involves asymmetry mea-
surements in total cross sections which could possibly
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be carried out to a quite high degree of accuracy. 8 Un-
fortunately, the quantity in Ref. 7 vanishes either when
parity conservation holds or when time-reversal invari-
ance holds, and hence this null experiment cannot be
interpreted unambiguously as a test of time-reversal
invariance. It is, in this respect, similar to the
neutron's electric dipole moment, and hence is of no
interest in the present context.

The significance of the result proven above is that it
precludes us from obtaining, in the foreseeable future,
a general, sensitive, and dynamics-independent test of
time-reversal invariance in any atomic, nuclear, or par-
ticle reaction. It would seem, therefore, that the only
way to increase the sensitivity of our time-reversal in-
variance tests in general types of reactions is to in-
crease the accuracy of the first two types of time-
reversal tests mentioned at the opening of this note.
With their precision standing at the present at 0.1% or
worse, it will be many years from now, if ever, that we
can use them for the type of sensitivity in time-
reversal invariance tests that we expect to provide
something of importance.
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