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Diffusion and Localization of a Particle in a Periodic Potential Coupled
to a Dissipative Environment
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The phase diagram of a Hamiltonian which describes a particle moving in a periodic potential and
coupled to an external heat bath has been analyzed in detail. By renormalization-group methods, it
is proved that this system exhibits an unusual transition between diffusive behavior and a self-
trapped phase. The dynamics along the transition line is shown to be integrable and the order
parameter, the mobility, is computed exactly.

PACS numbers: 03.65.Bz, 05.30.—d, 05.'70.Fh

There has recently been a great deal of interest in
trying to describe the quantum behavior' of systems
for which the classical motion would be damped due to
a dissipative interaction with their environment. The
physically particularly interesting situation of a particle
moving in a periodic potential has been considered by
Schmid. He has shown that the weakly corrugated
case is related by a duality transformation to the limit
where there are large potential energy barriers between
the wells and has conjectured by analogy with the
known results for the two-level system 5 that a non-
trivial phase diagram might occur. This model can be
relevant6 to studies of diffusion of heavy particles, like
muons and protons inside metals and at surfaces,
hence providing many new experimental realizations
where the interplay between quantum effects and dis-
sipation can be studied. Also, as discussed in detail
below, it shows an interesting example of self-
localization even in the absence of imperfections in
the periodic potential, a dynamical effect not discussed
before to our knowledge. Here it will be shown that,

I

H = Hp + Hbath + Hint ~

where Ho describes the motion of a particle (coordi-
nate q) in a periodic potential. The environment is
simulated' by an appropriate set of harmonic oscilla-
tors (a one-dimensional free boson Hamiltonian):

Hb„h = X ~
k

~ ak ak, k = + 27r m/L (2)

with m an integer less than L/to, . The coupling of the
particle to the environment is linear,

at zero temperature, there is a transition from dif-
fusive dynamics to a self-trapped situation at a critical
value of the coupling to the environment, clarifying
and improving the conjecture of a nontrivial phase dia-
gram made earlier. Moreover, we show that the
model is solvable along the transition line and we com-
pute exactly the mobility (the order parameter) by
making use of the well-known' equivalence between
fermions and bosons in one dimension.

The model is described by the Hamiltonian

H;„,= q (2q) ' Xk( ~
k ~/2L ) ' i (ak —ak) + gk(qq /L ),

where g is the classical friction coefficient.
We will work in the tight binding limit when the in-

tersite tunneling rates are small as compared with the
level spacing within each well. As mentioned earlier,
this case can be mapped onto the opposite situation,
when the corrugation of the potential is small. In this
limit the position operator and the Hamiltonian of the
particle alone are then simply

q = dXnc„c„, Ho= Ag(c„+ ~c„+c„c„+&), (4)

dimensional case. Extension to higher dimensions is
straightforward, the main difference being that the en-
vironment has to be described by a vector field and the
coupling between the position and the field in Eq. (3)
has to be replaced by a scalar product. All results dis-
cussed below can be extended without difficulty with
no qualitative changes.

In order to make the physics more transparent, we
will perform a canonical transformation U such that

Ua„U'= at, —(q/~klL)' 'q.where d is the lattice spacing and n labels the particle
site. In the following we will only consider this one-

The transformed Hamiltonian is then

H= UHU = gk~k~akak+Ag„[c„c„+&exp[ —&IXt, (2kL) ' (ak+ak)l+H c)

[where the dimensionless parameter X = (2q)'I d has been introducedj.
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In order to understand how the hopping parameter is
changed by the interaction with the bath at T = 0, let
us first suppose that the high-energy oscillators follow
instantaneously the motion of the particle. Then 5 is
reduced by a usual overlap integral" (computed by

simple normal ordering of the exponential):

5, = b, exp [ —(X'/4L, ) QI/ I k I ]. (7)

g, —g(g/~, ) "-' for n=) '/4~ & 1, (Sa)

6,= 0 for n =)1. /4m. ) 1. (8b)

The sum over k is cut off in the ultraviolet by an upper

frequency ~, and self-consistently" in the low fre-

quencies by 5, . Hence

Alternatively, one can write directly'2 from Eq. (7)

d
d lncuc

A(~, )

c

~(~, )= (n —1) (9)

These naive calculations give a vertical transition line
at o. =)1.2/47r =1 between diffusive motion and locali-
zation of the particle. In a previous paper we showed
how the same argument applied to the two-level sys-
tem had to be corrected in a full treatment of the tran-
sition around o. =1 to take into account other diver-
gent contributions. The corrected transition line is no
longer vertical for the two-level system. Here the very
surprising result is that there is no such correction be-
cause of the translation invariance of the problem„and
that the naive result is the true one.

Let us write the Hamiltonian H [Eq. (6)] in a con-
tinuum notation to ease the discussion of its sym-
metries:

H= i dx [ —,'~ (x)+ ('2„@)']+5(x)b, g c„c„+1exp[—Rig(x)]+H. c.
n=1

(10)

we put periodic boundary conditions on the lattice

(cz+1= c1). It is possible to do this on H without

breaking invariance by translation. For N=2 (N is
the number of sites) this makes our system essentially

different from the two-level system ' but the physics
should not be changed when N )) 1 (as can be
checked in the free-particle case by use of the results
of Ref. 13). Following the strategy of Refs. 5 and 12
we analyze the model in perturbation theory around
the point n=1, 5 =0 using n —1 and 6/cu, as small

parameters. The divergences that appear then are con-
strained by the symmetries of our Hamil tonian:
x ——x parity in real space (c„—c „, @——@),
and the translation invariance already mentioned,

. 277 fl 277
c exp i c, @(n) @(n)+n n~ zN

These divergences should also vanish when there is no
hopping particle, What are the corresponding local
relevant terms compatible with these constraints? We
have the renormalization of 5 already mentioned, a re-
normalization of the particle wave function, and a glo-
bal shift of energy. The counterterm that was respon-
sible for the nontrivial renormalization of A. (CT1 of
Ref. 5) is given by

5X Bi@(0) ( Cn Cn
—Cn+ 1Cn+ 1) ~

but it identically vanishes when we sum over n. There

could also appear higher charges (i ) 1) of the form
N

6,5(x) X [c„'c„+ exp[ —i Zly(x) ]+H.c.j,
n=1

but their scale dimension at o. = 1 is l in the free field
theory. [This can be simply verified by normal order-
ing of the operators in the exponential as in Eq. (7).]
Therefore, they are irrelevant around o. =1 (see the
similar discussion in Ref. 12 for harmonic perturbation
around the Kosterlitz-Thouless transition).

The above argument indicates that the transition
line is vertical in all orders of perturbation theory
around 5 = 0 and o = 1. It can be checked to first or-
der in two ways. First, we have verified that in a di-
agramrnatic analysis similar to that of Ref. 5, an ex-
plicit cancellation occurs between the diagrams which
were responsible for the renormalization of X in the
two-level system, and new diagrams that occur in the
present problem, because the operator e'~~ (positive
charge) need not be followed by e '~~ (negative
charges). The fact that the charges are not forced to
alternate destroys the screening effect. Alternatively,
the partition function can be expressed as a disor-
dered gas of charges along a line, interacting with a
logarithmic potential. Cardy gave a general analysis of
such systems to lowest order in the fugacity (5 in our
case) along lines similar to the original analysis of An-
derson and Yuval. ' Translating his results' to our
problem, we obtain again a vertical flow.

Schmid has proposed to differentiate the different
phases of the model by the mobility p, of the particle,
defined as the coefficient of the logarithmic growth of
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a suitably normalized two-point function, i.e. ,

3 (t) = (q (t) q (0) —q(0) q (0) ) = (p/2m 2n)lnt+ O(1), t

It is interesting to note that the mobility can be expressed in terms of boson operators only, although it is initially a
property of the external particle. First we rewrite H [Eqs. (6) and (10)] using momentum operators:

H = Xz r k
r at, at, + 25 X c~ c~ cos[p —

A Xz(2kL ) 't2(at, + az) ]. (12)

It is now obvious that the momentum p is conserved and can be treated as a number. For each p we can write an
effective Hamiltonian for the bath as [using the continuum notation Eq. (10)]

Hp = —,
' „[7r2(x)+ (B„g)2]dx+2b, cos[p —X@(0)]. (13)

gs = (S/27ri ) [exp(27r iq/S) —1]. (i4)

The two-point correlation function 3 (t) [Eq. (11)] is

The free boson Hamiltonian has the symmetry
@(x) @(x)+@0,so that there is a set of canonical
transformations which relate Hamil tonians for dif-
ferent values of k, and their eigenenergies do not
depend on k. Note that these features make the prob-
lem qualitatively different from the polaron case,
where the band is parabolic and an effective mass can
easily be defined. This is very similar to what happens
when there is no potential (free particle with fric-
tion'3 '6). In fact, the expansion of the cosine to
second order gives us exactly the effective Harniltoni-
an for the bath in the free-particle case. '3 As shown
below the mobility depends only on this effective
Hamiltonian for p =0. Therefore, it is equal to 1 (the
value for the case of free particle with friction) to
second order in X, and we have checked that it is not
affected by the X term in first order of perturbation
theory.

In order to obtain an expression for the mobility in
terms of boson operators we will use the following
periodic representation of the position operator in a
box of size S (S= Nd) with periodic boundary condi-
tions:

A (t) = llm (g'(t) gs(0) —gs (0) gs(0)). (15)

which is the expression of the mobility in terms of
phonon operators. This expression [or directly Eq.
(16)] allows us to compute exactly the mobility along
the transition line A. 2/4m =1. For this particular value
of A. the long-time dynamics of H~ (t && I/co, ) is
completely integrable in terms of Fermi fields. Using
the well-known boson-fermion equivalence in one
dimension'0 we can write'8

After insertion of a complete set of momentum eigen-
states for the particle this is expressed as

3 (t) = lim p (o~=orexp( —iH~t) —I ro 0), (16)p~ 0

~here lop=0) is the ground state of H~=o. '7 As men-
tioned above, H~ is related to H =0 by the canonical
transformation which shifts $ to $ —p/g [see Eq.
(13)]. This transformation can be written as
exp(ipII/A. ), where 11 is the total momentum of the
field. Making use of this and taking the limit p 0 in
Eq. (16), we have

w (t) = ) -'(0, ,rii(t)11(o) —11(o)11(0)ro, ,),

exp[i2Mm@(x) ] = (27r/cu, L ) Xc~ t, c2 „,exp[ix(k' —k) ],
k, k

H~ 0= Xk(c~t c~t, —c2t c2t ) + 2(A/L) X(c~qc2& + c2qc&t, ) ~ = (7r/~c)~.
k k, k

(is)

(19)

~ (i) = —,
' (s(i)s(o) —s(o) s(o)),

S= Xg(c&gc&g c2gcpg).
(20)

After some algebraic manipulations, we obtain finally

3 (t) —2[5/7r (1+5') ]'lnt,

p, = 4A /(1+ b, 2) 2.
(21)

Equation (19) is a Hamiltonian for independent fer-
mions and hence exactly soluble. '9 Translating 3 (t)
into fermion operators, we get

I

The mobility changes continuously along the transition
line with 5, the dimensionless ratio between the hop-
ping parameter and the high-energy cutoff needed to
define the phonon bath, and p, goes to zero as 5 0.

Our whole analysis is summarized by the phase dia-
gram presented in Fig. 1. We have studied the tight-
binding limit of the model proposed by Schmid. This is
the upper part of Fig. 1. We have shown that there is
a transition in the behavior of the particle when n = 1,
where n is a dimensionless parameter [Eqs. (6) and
(8)] measuring the coupling of the particle to its en-
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FIG. 1. Phase diagram of the model; p, is the mobility.
Dashed lines are conjectured flow in the intermediate-
coupling regime.

vironment. For o. ) 1, the dimensionless hopping
parameter b, is renormalized to zero (upward-pointing
arrows in the upper right corner of the phase diagram)
and the particle is self-trapped by the combined effects
of the potential and the friction. The mobility is there-
fore zero in this region. This part of the phase dia-
gram is well under control (which we have indicated
by shading the corresponding area) because 5 de-
creases as we lower the cutoff. For a typical o & 1, 6
remains finite leading to a diffusive behavior of the
particle. We can only present a conjecture for the
value of the mobility (see below) since 5 grows out-
side the range of validity of our perturbation theory.
For a small o. we are again on safer ground since the
Hamiltonian reduces to the one for the free particle
with friction for which the mobility is 1 (shaded upper
left corner). Finally, we can translate those results for
the lower part of the diagram by using the duality
transformation of Schmid (upper right lower left,
upper left lower right, p, 1 —p, ). In the middle of
the phase diagram we do not expect the appearance of
new physical effects and only a smooth crossover
between the 5 = 0 repulsive fixed line to the "free par-
ticle with friction" line at the bottom of the diagram
for o. & 1, and the opposite flow for o. ) 1. This physi-
cal argument lets us conjecture (dashed lines) that the
phase diagram is divided into two parts: p, =1 to the
left of the vertical line o. = 1 and p, = 0 to its right. zo
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