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Plasma Distribution Function in a Superthermal Radiation Field
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A plasma which is immersed in superthermal radiation suffers velocity-space diffusion which is
enhanced by the photon-induced Coulomb-field fluctuations. This enhanced diffusion universally
produces a power-law distribution (E/Ep) at energy E larger than a critical energy Ep where the
transition energy Eo and the power K are inversely proportional to the photon-field intensity.

PACS numbers: 52.25.—b

When the Coulomb mean free path is smaller than
the plasma size, the plasma is in thermal equilibrium
with the electrostatic Coulomb field. The velocity-
space diffusion coefficient then becomes proportional
to the friction coefficient, a consequence of the
fluctuation-dissipation theory, and the equilibrium
distribution becomes Maxwellian where the tempera-
ture is given by the proportionality constant. Howev-
er, most plasmas we encounter both in the laboratory
and in nature are not black bodies, and hence are not
in equilibrium with photons. Although photons do not
contribute directly to the velocity-space transport in a
nonrelativistic plasma, superthermal radiation can in-
duce fluctuations in the Coulomb field which produces
enhanced velocity-space diffusion while the friction
coefficient is not affected by photons. Consequently
the enhanced diffusion coefficient is expected to be no
longer proportional to the friction coefficient. In this
Letter, we show that the proportionality constant is
then given by the square of the test-particle velocity in
the high-energy regime. This leads to a multiplicative
stochastic process in the velocity-space diffusion, and
a power-law distribution function originates at the
high-energy tail. The overall distribution function
resembles the tr distribution which is often used to fit
the particle distribution function observed in space
plasm as.

We consider the Fokker-Planck equation to describe
the evolution of the distribution function in the
Coulomb field:
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where the diffusion tensor is given by

D = D iiI +D i(I —vv/u ).

The isotropic stationary solution of Eq. (1) is given by
r

fp(u) du=A exp J u du 4mu du,2y( ) 2 (2)

where 2 is the normalization constant, and the longi-
tudinal diffusion coefficient D ii is given by (to = k v)

2 2
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where q, M, and u are the charge, mass, and the speed
of the incident test particle, eo and k are the frequency
and the wave vector of the Coulomb field Ei, and
(Ei ) is the spectral density. The frictional coefficient
y arises from the polarized Coulomb field due to the
test particle and is given by the imaginary part of the
longitudinal plasma dielectric function e(co, k),

2
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When the plasma is in equilibrium wtth
Coulomb field, the fluctuation-dissipation theory
gives

(Et )» „=— —Im
2 T 1

ep Co e( rd, k)

where T is the plasma temperature in energy units.
Hence, from Eq. (3),

Dii (u) = —2Ty(u),

and from Eq. (2) the stationary distribution becomes
Maxwellian.

In the presence of a superthermal radiation field,
however, the fluctuation in the Coulomb field is
enhanced as a result of the induced scattering by pho-
tons. This leads to an enhancement of the diffusion
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coefficient.

where Dii' is the diffusion coefficient due to the
equilibrium field given by Eq. (5) and Dii is the dif-
fusion coefficient due to the photon-induced longitudi-
nal field, EI ",

2 fO 2

D NL ( v) q
~

d3k ((ENL) 2) (8)
E(t) =Ep(cop) e '""+c.c.,

is easily obtained from the Vlasov equation:

(lo)

The induced longitudinal field is given by the induced
density perturbation of ele"trons,

ZIN'(~, k)=
k „fy"(~, t, v) u'u,

ept co k k

where fNL is the induced velocity distribution function
of the electrons. If we write the electric field of the
photons as

1

(e/nt) " " B k ' v —0) " Bfo
fN (~, k, v) = [(k Eo(cuo)k EI(~ —~p, k)]k k' + (~o —~o)

(k ~ v —~) Bv k'v 0)+cdp Bv

where El(co —coo, k) is the equilibrium longitudinal electric field whose spectral density is given by Eq. (5) and k
( =k/k) is the unit vector in the k direction. Substituting Eqs. (9) and (11) into Eq. (8), we obtain the photon-
induced diffusion coefficient

where

q Irpl T r 3
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lrol'= l«o/m~ol '= 3 (I «Eo/m~ol') (13)

] QOO

to give
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where ko ( =o&~/vT, ) is the Debye wave number.
We note that when the radiation field has a frequency
spectrum close to the plasma frequency, e(cuo, o) =0,
and thus the photon-induced diffusion is enhanced.
The contribution from induced high-frequency fluc-
tuations (co —cuo —co~, ) can be evaluated in a similar
way. The result gives DII which is proportional to
v and can be shown to be much smaller than the
contribution from the low-frequency fluctuation given
in Eq. (14).

If the test particle is an electron, at v & v T, Eq. (14)
gives

kD Irol vTe ko 1

6m' v np Ie(~p 0) I

(IS)

is the square of the direction-averaged excursion dis-
tance of electrons in the photon electric field, and X, is
the electron susceptibility.

Let us evaluate D Pi ( v) first for induced low-
frequency fluctuations such that co —cuo

——0. The
integration (12) can be evaluated by use of d3k =27r
x k j dki dk i[

= (27r/v ) ki dk1 do), & (ct), k) —e (o)p, k),
I x, (~, k) —x, (~ —~p, k) I

= kD/k, and the sum rule

where np is the electron number density. This should
be compared with the longitudinal diffusion coefficient
of electrons due to the equilibrium Coulomb field6 at
U K VTe~

D eq(e)
II

5
&Te

0)pe2' ~ np

kD
lnA, (16)

K

=A 1+
2KU Te

2
4mv dv, (17)

where

, Ie(o)o, o) I

31nA
2 rp kD

(18)

and the normalization f fp( v) 4m v d v = 1 gives
0

2K —3 I (K)
4&2(~K)'t'»', I-(K ——,

' )

and I is the gamma function. We see that the station-

where lnA is the Coulomb logarithm. We see that
D II

' becomes larger than D II

' at

(v/vT, )' & 3le(~o, o) I'»w/ko lrpl'.

We note that the friction term y(v) is not modified
because the induced fluctuations by the photon field
are not correlated with the polarized field by the test
particle. Therefore, the stationary distribution func-
tion of the test particle in the presence of the photon
field is given by

2yv 2fp(v) dv =A exp
& &L& i ( i

dv 4mv dvDNL(e) +Deq(e)
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Eo /ETe = Uo/2 v Te
= K, (20)

where ET, is the electron thermal energy mv2T, . The
distribution function obtained in Eq. (17) resembles
the K distribution often used to fit the particle data in
space plasmas. 3

Let us now consider an ion test particle. If the test-
particle speed is larger than the electron thermal
speed, we see from Eq. (14) that the result is identical
to the case of an electron test particle and the power-
law distribution results. This may be important when
the electron temperature is much smaller than the ion
temperature. On the other hand, if the ion test-
particle speed is less than the electron thermal speed
(yet larger than the ion thermal speed), Eq. (14) gives

2 2 &/2

NL(,.) Irol ko u 2 kD
'

m,
& Ti to~ . (21

'tr 'U T~ no m;

Since Di((') in this velocity range is also proportional
to w, Eq. (21) shows that the total diffusion coefficient
D ii is slightly modified in magnitude and the resultant
stationary distribution remains Maxwellian.

In conclusion, we have shown that in the presence
of nonequilibrium photons, the stationary distribution

ary distribution function is given by a power law

f(v) = v "at large velocity. In terms of the energy
distribution fo(E), at E )Eo,

fo(E) = (EIEQ)

with the transition energy Eo being given by

function of electrons and ions obeys a power law at
velocity much larger than the electron thermal speed.
The ion distribution function in the velocity range
between the electron and the ion thermal speeds
remains Maxwellian, although this result does not rule
out a possible production of a power law distribution
for ions in this velocity range by low-frequency elec-
tromagnetic waves.

Since most plasmas we encounter in the laboratory,
in space, and in astrophysics are not black bodies, the
present result applies inherently to most plasmas and is
believed to play a crucial role in modifying the plasma
transport coefficients.
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