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~e describe a precise mathematical theory of the Laughlin argument for the quantization of the
Hall conductance for general multiparticle Schrodinger operators with general background poten-
tials. The quantization is a consequence of the geometric content of the conductance, namely, that
it can be identified with an integral over the first Chem class. This generalizes ideas of Thouless
et al. , for noninteracting Bloch Hamiltonians to general (interacting and nonperiodic) ones.
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The integer quantization of the Hall conductance
has been explained by Laughlin' making clever use of
a nontrivial geometry: a ring threaded by a flux tube,
combined with a gauge argument. The impact of this
work on the development of the subject cannot be
overestimated.

Our purpose here is to describe a precise mathemati-
cal theory of this argument. The two key issues are,
first, Laughlin s identification of a physical quantity as
the Hall conductance averaged over one unit of quan-
tum fiux (of the flux tube that threads the ring). Fol-
lowing Laughlin we shall slightly abuse the terminolo-
gy and call it the Hall conductance.

The second main theme will be the identification of
the geometric content of the Hall conductance:
Roughly speaking, there is a natural notion of curva-
ture describing how the state of the system is parallel
transported in the Hilbert space of states. The Hall
conductance is a suitable integral of the corresponding
curvature. More precisely, it is an integral over the
first Chem class. 2 This was first recognized by Thou-
less et al. in the special case of noninteracting Bloch
Hamiltonians. What is shown here is that this holds
generally, with electron-electron interaction and gen-
eral background potential. (No flux averaging is
necessary for Bloch Hamiltonians. ) Bellissard general-
ized the result of Thouless et al. from rational to real
magnetic flux. 4

We shall replace Laughlin's condition that the Fermi
energy lies in the region of the localized states (which
is not an appropriate condition for multiparticle Hamil-
tonians) by a condition of nondegeneracy of the mul-
tiparticle ground states (for all fluxes).

Our work has been independent of, but is neverthe-
less closely related to, a recent published paper of Niu
and Thouless. ~ The general framework is similar,
although there are some differences in the details and
in the approach. In both storks one needs the ground
state to be separated from the rest of the spectrum by

a finite gap (the nondegeneracy condition). In both
approaches one considers time-periodic Hamiltonians
(in Niu-Thouless only up to unitary equivalence). In
Niu and Thouless the time dependence resides in the
substrate potential and it comes from a Galilean
transformation that removes the electric field. In our
case, the time dependence comes from generating the
electromotive force by a flux tube, and so resides in
the minimal coupling term in the Hamiltonian. In
both, strict quantization is obtained only after a suit-
able averaging: In Niu-Thouless the averaging is over
boundary conditions and here, averaging is over the
fluxes in Laughlin's flux tube.

We feel that avoiding the Galilean transformation is
a distinct advantage of the present approach. Also,
essentially all the structure we shall use of the Hamil-
tonian is minimal coupling. This makes it clear, for
example, that there are no relativistic corrections, nor
spin effects, nor finite-volume corrections, not even
exponentially small ones, something which is less ob-
vious in Ref. 5. We also note that our approach is
more geometric and in our opinion, simpler.

We stress that strict quantization is proven for the
Hall conductance averaged over the fluxes in Laughlin
flux tubes. It is interesting to investigate under what
conditions the Hall conductance for most flux values is
close to its average. This problem has been investigat-
ed by Thouless and Niu- Thouless, who showed that
under suitable additional conditions this is indeed the
case in the thermodynamic limit of infinitely large sys-
tems. This is reasonable as it is easy to see that varia-
tions in the conductance are the same as those caused
by changing the lengths of the connecting leads. The
results in Ref. 5 are essentially perturbative, and are
based on the assumption that correlations decay fast.

The nondegeneracy condition turns out to be a suffi-
cient condition for integer quantization at zero tem-
perature and finite volume (we shall study the
infinite-volume limit elsewhere). From this one can
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also learn about fractions: Tao and Wu and Tao have
extended Laughlin's argument to degenerate ground
state and have shown that the ground-state degeneracy
is related to the denominator of the fractional conduc-
tance. The present analysis extends to this case as well
and agrees with these results. However, since degen-
eracies are nongeneric it is not clear how one can get
plateaus at fractions. We speculate that this occurs via
diamagnetism as the relation between the external and
internal fields is singular near degeneracies because
the ground-state energy is not smooth there. We have
nothing to say about the odd-denominator rule.

We find it convenient to formulate the problem in
the following setting. Consider a domain A in the
plane, with two holes. The holes are threaded with
two flux tubes with fluxes @= (Qt, @2). On the boun-
dary of A we impose Dirichlet boundary conditions.
Now consider the multielectron Schrodinger Hamil-
tonian for this system, H(Q), depending on @ through
tninimal coupling. The geometry, shown in Fig. 1(a),
is motivated by that of the physical Hall effect shown
in Fig. 1(b). The motivation is clear once the leads
that connect to the sample in Fig. 1(b) are considered
as part of the system. [One may remove the leads in
Fig. 1(b) at the expense of imposing periodic boundary
conditions. ] We take one of the fluxes, say Qt, linear-
ly increasing with time thereby replacing the battery in
Fig. 1(b). The second flux is the flux tube introduced
by Laughlin in his original argument and is shown also
in Fig. 1(b). The translation between the two
geometries will always be evident and henceforth we
stick with that of Fig. 1(a).

Adding one unit of quantum flux to $t or qb2 is
equivalent to a gauge transformation. H(@) is there-
fore a continuous function of two variables with a na-
tural period of 2vr in each (in units where t = e = 1).
There is now a formal analogy with Bloch Hamiltoni-
ans in two dimensions where H(k) is a function of the

two Bloch momenta with natural period given by the
Brillouin zone. This suggests that the ideas developed
by Thouless and co-workers and by Thouless for
Bloch Hamiltonians could be applied in the present cir-
cumstances as well.

For our purposes it is convenient to consider Hamil-
tonians that are smooth and periodic functions of $.
To achieve this, introduce two cuts in A so that the
resulting set, A, is simply connected. The vector po-
tential associated with @ is the gradient of the function
F(@) which is regular in A and with discontinuities @t
and &2 across the cuts. H (P ) = exp [ —i F(P ) ] H ($ )
x exp [iF(@) ] is formally P independent. The
dependence enters through the exp(i@t 2) boundary
conditions that the wave function has to satisfy across
the cuts. H($) is manifestly periodic in @. H(@) is
periodic up to unitary equivalence.

All we shall need in order to prove the quantization
is to assume that H(@) has a nondegenerate ground
state for all values of @. Let us examine this condi-
tion. Recall that according to the Wigner —von Neu-
mann no-crossing theorem, eigenvalue crossing has
codimension three. This says that Hamiltonians that
depend on two parameters will not have any degenera-
cy (generically) while those that depend on three
parameters have points of degeneracy. Thus, with @
as parameters there are no crossings, but if one varies
the magnetic field as well, there will be crossings at
special values of the magnetic field. These are the
special values of 8 where the Hall conductance jumps.
The proof of integer conductance we give holds for
generic Hamiltonians at zero temperature. Had there
been a way to prepare the system at an excited and iso-
lated eigenstate, the Hall conductance would be quan-
tized then too. It follows that at finite temperature it
is, generically, a thermal average of integers. '0

Let iQ) be the ground state of H(@) with energy
E(@). By the assumption of nondegeneracy, it can be
chosen normalized and smooth in @ (for all $). The
same holds for iII). However, it is in general impos-
sible to require periodicity in @ as well. In contrast,
the spectral projection, P(@)=

~
II ) (fl ~, is both

smooth and periodic in $.
We shall establish the following set of formulas for

the (flux-averaged) Hall conductance (tTH):

27r(o-„) =
J (fl Id&) (la)

„(dnldn) (lb)

FIG. l. (a) The domain A with the two holes threaded by
the two flux tubes; (b) the standard Hall settings with the
connecting leads considered as part of the system. Both
geometries have two independent closed cycles. The battery
in (b) is replaced by a time-dependent flux tube in (a). Both
have an extra flux tube which is put there "by hand" in the
Laughlin argument.

J Tr ( dPPdP)

Tr ( dPPdP )

(1c)

(le)
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T is the square of length 2m and tl T is its boundary.
The physics lie in showing that (la) follows from a

reasonable definition of the Hall conductance. The
equivalence of the various formulas turns out to be
simple. Equations (la) and (lb) are analogs of the
basic equations in Thouless et al. and therefore ex-
press an integer by their argument. This is a standard
mathematical fact and we shall sketch a simple proof
of it towards the end of this note. Equations (1c) and
(ld) were used before in Ref. 11. Equation (le) is the
standard Kubo formula (this is explained below) .
Here R = (27ri ) 'II(iR (z)/(z —E)dz = R (1 —P) is

the reduced resolvent.
If @t = —Vr, @2=const, there is an electromotive

force V around hole 1 and "Hall current" I2=o-2& V
around hole 2. We shall establish a formula for a.2~, in

I

» = - i(e, (~, ~,~) + (o,~, e,~) —(e,~, a,~) ).

which satisfies the evolution equation'

ti W' = [t) P P]+'4 (2)

As a result of the fundamental expression for the
current' I& ——(%(BzH(%), one finds for the conduc-
tivity

the limit V 0 assuming that at time t =0 the system
is in a state W which is an eigenstate of H(@t =0, @2).
We may choose +(r =0, @2)= B($&=0,$2).
evolves in time according to the Schrodinger equation
—iVrl&%= H(@)W. In the limit V 0, + evolves
adiabatically in the $, variable. Therefore we shall
have to use in the following the adiabatic wave func-
tion

+'~(@)= lim [exp(i/V) Jt d@'~ E(@'&, @z)]+(p)

The adiabatic wave function does not represent W(@) well enough to compute o.2t, but it is sufficient to compute
(o.2, ) . ' The reason for that is that (a.2t) can be written as a line integral (rather than a surface integral):

( ) = —
(J d@ (+, 8 'If) (~,=o+„,(d'If, d+)] (4)

i d42(+, &2+) l&, =o (5)

(6)

27r (a-2, ) =—

In going from (4) to (5) we used Stokes theorem; (6) follows from (5) due to periodicity of the ground-state ener-
gy E(@). Since +'~(@) is a ground-state wave function it follows from our spectral assumption that W'a(@)
equals fI (@) up to a phase expiy(@) (Berry's phase' '5). Hence we get for the Hall conductivity

d@2(irl2y+ (II, tlzfl)) ly =p = [I (27r) —I (0)]—
J dP (II, B2A) (@ =0, ('7)

Tr(dPPdP) =Tr(dPPdP) + id Tr(PdF). (9)

PdF is continuous in $ on T so the boundary term
vanishes upon integration. c = e follows from the
operator identity:

dPPdP = R (dH)P(dH) R,

and the cyclicity of the trace.

(10)

where we used the notation I ($z) = y(gt=27r, @2)
and the fact y(Q& = 0, $z) = 0. To compute the 1 's we
use Eq. (2)

0 (Wag (it%au) =iB)y+ (A, tl)II).
Integrating yields

2'
I (27r) —I (0) =i JI dg, (II, BtfI) (g, =o.

Inserting (8) into (7) gives (la).
A simple computation gives d ( SI ld II )

= (d II ld Q.) = Tr(dPPdP). This establishes a = c and
b = d. The equivalence c = d follows from

Equation (le) is Kubo's formula. To see that write
A, = @,a, for the two vector potentials with a, normal-

ized by f a; dt= 2m. 5,&, c& is a loop around hole j. dH
= ——, (v a;] d$; with v= gP tv; the cannonical velo-
city and N is the number of particles. Since in (le)
only the antisymmetric part enters, one of the terms in
dH must be identified with the perturbation and the
second with the observable. If we take $&(t) and $z
fixed it follows from minimal coupling that the d$&
term in dH is indeed the perturbation. To see that the
d@z term is the response we note that without loss of
generality we can choose az= (27r) '(gradH) where
the polar coordinates (r, 0) have their origin in hole 2.
The d@2 term in dHis now naturally interpreted as the
quantum mechanical observable associated with the
rotation frequency 0/27r around hole 2. After some
algebra this is seen to reduce (le) to standard forms of
the Kubo formula (with a qb average). It is interesting
that this version is free from the uncontrolled inter-
change of the V 0, t ~ limits, or the adiabatic
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switching which makes the derivation of the dissipa-
tive part of Kubo formulas mathematically formal.

We conclude with a proof that (lb) is an integer
when integrated on any two-dimensional manifold
without a boundary (in our case a 2-torus).

Take lA($)) as our fixed basis and l'Pt($)) satis-
fying the adiabatic dynamics along the loop 1. l&)
and l

+ t) are related by the holonomy' (Berry's)
phase: l'Ift) = (expi7 t) lA (@)). Now if 1 is the
boundary of S, yt =if (0 ldll) = i J Tr(dPPdP).

On a closed orientable manifold such a 1 is in fact
the boundary of both S,„, and S;„. Therefore, from
the uniqueness l'P):

(J~ —' )Tr(dPPdP) = 27r (integer). (11)
Out in

The integrand is smooth. Hence in the limit that S;„
shrinks to a point and S,„, is the entire manifold we
obtain the requisite result expij Tr(dPPdP) = l.

T
In conclusion, we have shown that Laughlin's argu-

ment and its extension to fractions by Tao and Wu can
be understood in terms of the first Chem class of the
line bundle over the torus associated to the ground
state of H(qb).
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