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Phase Structure of Systems of Self-Avoiding Surfaces
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Models of self-avoiding random surfaces with chemical potentials for topological quantities in
three and four dimensions are investigated by Monte Carlo methods. We explore the phase dia-
grams and find first- and second-order transition lines and triple points,
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In a recent paper' we investigated the thermo-
dynamical behavior of self-avoiding random loops by
Monte Carlo simulations. In this Letter we report on
the self-avoiding random-surface problem. Random
surfaces are a useful concept in different regions of
physics. An analog of Symanzik's polymer description
of quantum field theories2 is the random-surface for-
mulation of gauge theory (see Frohlich3 and refer-
ences therein). The string quantization problem has
been formulated as summation over random surfaces. 4

Moreover, there are possible applications5 of random
surfaces to the physics of microemulsions whose sta-
bility relies on a balance of entropy and energy of the
interfaces (see de Gennes and Taupin6 and references
therein). For previous Monte Carlo simulations of
random surfaces, see Ref. 7.

We consider systems of self-avoiding random sur-
faces in three and four dimensions on simple cubic lat-
tices of size L with periodic boundary conditions. A
configuration cC 4 of closed self-avoiding surfaces
comprises a collection of plaquettes in the lattice such
that each link in c is contained in two plaquettes. Thus
the surfaces may not intersect at a common link, but
two (locally) distinct surfaces are allowed to touch at a
vertex. The latter fact turns out to be crucial for the
existence of a "droplet phase" as will be discussed
below. We shall refer to such common points as "con-
tact points. "

The Euler characteristic of a configuration c of sur-
faces reads, in terms of the numbers of occupied sites,
links, and plaquettes,

sites niinks+ npiaq

where for closed self-avoiding surfaces ni;„k, = 2npi, q.
A configuration can be generated iteratively as fol-

lows. Starting from an old configuration we get a new
one by a local change in a unit three-dimensional cube
under the condition that the new one is allowed. A lo-
cal change means the replacement of empty plaquettes
by occupied ones and vice versa (i.e. , Sterling and
Greensite's "change-a-cube" operation ).

By a Monte Carlo simulation we generate samples of
equilibrium ensembles of configurations c, . In our
heat-bath updating procedure we sequentially sweep all

(3) Ld unit cubes and accept the new configuration

with probability

Wnew/( oid+ Wnew)r

where the w's are the Boltzmann factors

w = exp( —energy/kT).

(2)

The thermal average of a variable A is then approxi-
mated by

N

(~) = —g ~(c,). (4)
N 1

In the following we discuss three variants of models
of self-avoiding random surfaces. They are related by
slight modifications of the corresponding partition
functions. The first simple model that we consider is
defined by

Z, (P) = g exp[ —Ps(c)], (5)
cE Q

where the energy of a configuration c is taken to be
proportional to the total surface, s(c) is the number of
plaquettes, and P = e/kT with e the energy of one pla-
quette. Note that this model would be equivalent to
the Z2 lattice gauge model if the self-avoidance condi-
tion were not imposed.

In general a phase transition of a system shows up in
a singularity of the free-energy density —kTlnZ L
in the thermodynamic limit L ~. We investigate
this in terms of several observables as a function of
the inverse temperature P. The average energy should
be discontinuous,

E+ =E(P„+e), E+ ( E

at a first-order transition point P,„and vary like

(E) = E,„+constx (P —P„)'
at a second-order one. On finite lattices these
behaviors are smeared out by finite-size effects.
Therefore it is hard to decide whether an observed ra-
pid decrease of (E) as a function of P signals a phase
transition of first, second, or higher order, or no tran-
sition at all. That is why we employed some more re-
fined methods (see, e.g. , Creutz, Jacobs, and Rebbi8)
to investigate phase transitions (thermal cycles; cold,
hot, or mixed starts; different lattice sizes). Figure 1
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shows the average energy (s) and Euler characteristic
(X) obtained in a "I8 cycle" by a typical Monte Carlo
simulation on a lattice in three dimensions. They
show evidence of a second-order phase transition at

P,„=0.36. This result is supported by many additional
Monte Carlo runs for different lattice size. Intuitively
the critical behavior of this self-avoiding surface gas
can be understood in a manner analogous to the case
of self-avoiding loops, which we investigate in Ref. 1.
We observe that (X) is positive in the low-
temperature phase P )P,„; therefore, a typical config-
uration consists predominantly of relatively small,
separated components. In the region of the transition
temperature large surfaces appear and long-range fluc-
tuations generate critical behavior —a second-order
phase transition. In the high-temperature phase (X) is
negative and a typical configuration consists of a single
connected object with many handles similar to a
sponge. Note that the average Euler characteristic
vanishes at the critical temperature,

(X) =0 for P=P,„,

i.e. , the mean curvature vanishes. This flatness might
be related to scale invariance.

The corresponding measurements in four dimen-
sions show markedly different results. We find hys-
teresis loops in the P cycles of both the energy and the
Euler characteristic (cf. Fig. 2) indicating a first-order
phase transition at p„=0.68 with an energy jump
b, s L d=0.45. The occurrence of a first-order transi-
tion contrasts with the loop-gas case, where we ob-
served a second-order phase transition both in two and
three dimensions. This might be due to topological ef-

fects, the formation of handles in the "sponge phase. "
On the other hand, the observed different types of
transitions are in agreement with those of Z2 lattice
gauge theories in three and four dimensions. 9

Apparently the handles (more precisely —X, the
negative of the Euler characteristic) drive the phase
transition, as similarly the monopoles do for the U(1)
lattice gauge model. '0 It is therefore suggestive to in-
troduce a "chemical potential" for —X, and to consid-
er a second model defined by the partition function

Z»(P, p) = g exp[ —Ps(c) + pX(c) ]. (9)
c6 g

Now positive (negative) p, will enhance (suppress) the
Euler characteristic, and we expect the transition tem-
perature P,„ to become a function of the parameter p, .

For the Monte Carlo simulation the Boltzmann factors
[Eq. (3)] have to be modified appropriately. The
results of a series of Monte Carlo runs are collected in
Fig. 3 for three and four dimensions. Also, in three
dimensions, the vanishing of the Euler characteristic at
the critical temperature [cf. Eq. (8)] holds true for all
values of p, . Let us remark that model II might also be
interesting from the quantum field theory point of
view, since for small N the U(N) lattice gauge model's
partition function is approximately given by (cf. Mari-
tan and Omero, " and Durhuus, Frohlich, and
Jonsson" )

Z= g 2
N"N

ca@,g

Another topological quantity which is intrinsic and
locally computable can be expressed in terms of the
numbers of connected components n„„and handles
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FIG. 1. Monte Carlo results for model I on a 10 lattice

obtained in a P cycle. The average surface (s) and Euler
characteristic (X) values are taken over 500 configurations,
each obtained after three complete sweeps through the lat-
tice. The rapid decrease of (s) but absence of a hysteresis
loop show evidence for a second-order phase transition at
p„=0.36. For low temperatures (s) = 3(X), since per unit
cube s =6 and X=2.

FIG. 2. Monte Carlo results for model I on a 104 lattice
obtained in a /3 cycle. The average values for (s) and (X)
are taken over 1000 configurations. The hysteresis loops are
interpreted to result from relaxations and show evidence for
a first-order phase transition at P„=0.68 and a latent heat of
6 s/104 = 0.45.
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since surfaces which touch at a contact point are con-
sidered not to be connected at this point. Therefore ict

is the natural quantity for our self-avoiding surfaces
and we consider a third model with new interesting
features,

0.5
Ztu(P X) = g exp[ —Ps(c)+)tttt(c)].

cE@
(12)

0.5

FIG. 3. Phase diagram for model II in three and four
dimensions showing the transition lines which separate the
low-temperature phase from the disordered sponge phase.
We observe second-order transitions in three dimensions
and first-order transitions (double lines) in four dimensions.

Since the average number of contact points will be
small for small X, we expect model III not to deviate
substantially from model II in that regime. For posi-
tive increasing A. , however, there will be a further
enhancement of contact points. Therefore, we expect
in three dimensions for large A. the existence of a new
ground state consisting of simple cubes (or "drop-
lets" ), each touching eight others at its corners. This
is the dense packing of self-avoiding (along edges)
closed surfaces. In our Monte Carlo simulations we
indeed observe this droplet phase which is separated
from the other two phases by a line of first-order tran-
sitions, as shown in the diagrams of Figs. 4(a) and
4(b) for three and four dimensions, respectively. The
triple points are found to be approximately at

nhand for closed self-avoiding surfaces,

tI = 2 ( &comp nhand) .

(P, A. )„; = (0.00, 0.75) for d=3,

(P, A. )„;p= (0.27, 0.80) for d =4.
(13)

For "strictly self-avoiding" surfaces, i.e. , without con-
tact points, ill is equal to the Euler characteristic X.
But if contact points are permitted, the following rela-
tion holds:

0 = ~ @ ~contact pointsi

It is instructive to see three phases showing up in
Monte Carlo simulations for a "A. cycle" with P slight-
ly above Pt„;p. Figure 5 presents (s) and (X) for a
measurement in four dimensions along the dashed line
in Fig. 4(b).

We would like to point out that in our simulations

05-
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phase 0.5

FIG. 4. Phase diagram for model III in (a) three and (b) four dimensions showing three phases, transition lines, and the tri-

ple points.
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since the surfaces can be thought to divide the whole
lattice into "interior" and "exterior" parts, V;„and
V,„, respectively. It vanishes at the critical tempera-
ture like
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FIG. 5. Monte Carlo results for model III in four dimen-
sions. The average surface (s) and (t'ai) =2(n„„—nh, „d)
were obtained at P = 0.33 in a A. cycle along the dashed line
in Fig. 4(b) through all three phases. The hysteresis loops
correspond to the two first-order transitions: sponge

low-temperature droplet phase.

the existence of the third antiferromagneticlike phase
(droplet phase) does not depend on an additional at-
tractive force as was introduced, e.g. , by Sterling and
Greensite, 7 but it is sort of a hard-core effect. It is
generated essentially by the self-avoidance require-
ment of the surfaces which for large A. and P are al-
most exclusively unit cubes (with s = 6). In fact, we
may rewrite the partition function as

Z&n= g exp( —on„„Ps'—. 2A. nh—,„d),
cE g'

(i4)

(T,„=—0.05. (16)

In the case of self-avoiding closed surfaces in three
dimensions, there exists a natural order parameter

m=(v, „—v,„)/(v,„+v,„), (17)

where s' = s —6n„~ and o- = 6P —2A. . For large A. and

P and o-= const, s' and nh, „d will be suppressed, and
we can approximate

Z&t&
——g exp( —o-n„„).

cog
Thus that part of the corresponding transition line
should approximately be given by o-,„=6P,„—2A. ,„= const, which is in good agreement with our Monte
Carlo results, where we find

m —( T, T)t—', (I&)

and is identically zero in the sponge phase. The latter
phase is invariant under the exchange interior ex-
terior, whereas this symmetry is spontaneously broken
in the other phases. We have determined the critical
exponents (n, P, etc.), which will be reported else-
where
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