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Measuring the Dimension of Space- Time
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Operationalistic definition of the dimension of space-time leads to the possibility of its experi-
mental determination. Several reasons may be given for the fractional dimension of space-time to
be slightly smaller than four, yielding a finite quantum electrodynamics. Comparison between the
best experimental values for the electron g —2 factor and theoretical prediction gives the value
4 —(5.3 + 2.5) && 10 7 for the dimension of space-time.
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Various heuristic reasons may be given for space-
time to have dimension four. Here, we wish to raise
the question of whether the dimension is necessarily
of integer value, as assumed a priori by most physi-
cists. Yet "a concept does not exist for the physicist
until he has the possibility of discovering whether or
not it is fulfilled in an actual case." Therefore, in this
Letter we present the concept of measurement of the
dimension of space-time, taking into account the in-
trinsically unavoidable finite resolution of any physical
experiment. Furthermore, we propose that once the
finite resolution limit is taken into account, there is no
immediate necessity for the dimension of space-time
to be integer, i.e. , exactly of value 4.

The Hausdorff measure can be used as a starting
point for a generalization of the dimension of space-
time to noninteger values. Conceptually, this implies
the covering of a region of space-time with a set of
coverings (B; I of dimension n,

p, (n) = lim inf g (diamB, )
0+ all covering{ B7 } 7

~ ~ diamB, ~ 0

Here, (diamB;) is defined in a definite metric and is
not relativistically invariant, but since the Hausdorff
dimension is the same for equivalent definite metrics, 4

it is Lorentz invariant. From (I) the Hausdorff
dimension may be found via the umklapp property
p, (n) ~ for n ( uH and p, (n) =0 for n ) nH.

It is now important to note that definition (I) im-
plies the limit e 0+. Yet any real experiment actu-
ally performed in order to determine the dimension of
space-time by necessity has to operate with an in-
herently finite resolution, if not for other reasons then
certainly in the quantum limit. This implies that the
definition (1) cannot be subject to operational realiza-
tion but has to be generalized. This we propose by in-
troducing the operational measure

p, ,„(n,5) = lim inf g (diamB;) . (2)
8+ all coverings IB,.I

e ~ diamB. ~ 8I

This definition now is sensitive to possible irregular-
ities or a granular structure of space-time. It also is
not subject to the limitation of the Hausdorff defini-
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tion mentioned above, since 5 can be taken to be the
finite resolution encountered in the experiment. In
order to obtain a specific value for the dimension the
umklapp property presented above for the case of the
Hausdorff definition has to be generalized, which can
be done by requiring

82p.p(~, &)

BA2 a=a „
(3)

giving the operational dimension n, ~. This operational
dimension will in general be a function of the experi-
mental parameters; in particular it may depend on the
resolution 5. A lower limit of the resolution may be
obtained by the property that any experiment operates
with a finite total energy E, only. Hence, one can esti-
mate on the basis of quantum uncertainty considera-
tions

Axh t ) c (t/E, )2, (4)

with the resolution

5 = [(dlx) + (cht) ]

As expected, the resolution is not Lorentz invariant.
From these considerations the following conclusions
may be drawn:

(1) Since every experiment performed for determin-
ing the dimension of space-time by necessity operates
with finite energy expenditure, there exists a lower
limit of space-time resolution beyond which the defini-

0,'op ( 0!H. (6)

In the absence of any experiment performed and
aimed explicitly at measuring the dimension of space-
time, one has to look for possible effects of a nonin-
teger dimension in existing experimental results. As a
result of the relation (6) a Hausdorff dimension of
space-time less than four would also imply that the
operational dimension of space-time is less than four.
As a consequence of space-time's Hausdorff dimen-
sion being less than four, the logarithmic divergences5
of quantum electrodynamics would disappear, no
rnatter how small the deviation from four may be. In
this way, the formal structure of the theory and partic-
ularly its kernels K can be maintained and the integrals

tion (2) is operationally unrealizable. Therefore, be-
yond the resolution the concept of dimension itself
loses its meaning.

(2) Since operationally dimension is determined via
a quantum measurement procedure, it is intrinsically
uncertain to an extent. It follows, therefore, that the
dimension of space-time will never be found to have a
sharp value.

(3) The boundaries of the covering set (8,] are by
necessity unsharp. Yet in order to compare the opera-
tionally defined dimension with the Hausdorff dimen-
sion we propose to require the operationally defined
measure [Eq. (2)] to be equal to the Hausdorff mea-
sure [p, (n,~, &) = p, (nest, 0) ]. Since the measure is
positive definite, p, (~tt, &) ~ p, (nH, 0), the operation-
al dimension n, ~ has to be adjusted such that the dou-
ble counting is compensated, which implies

K dp, = lim lim inf QK(x;)(diamB;) H

8 0+ e 8+ all coverings fB,)
e~ diamB. ~ 8I

x,e B,.

turn out to be finite.
It follows that the predictions of quantum electro-

dynamics are sensitive to the actual value of the
dimension nH. The calculations may be readily per-
formed by the calculus of fractional integration and
differentiation. 6 7 For example, for the anomalous
magnetic moment of the electron one obtains to first
order in the fine-structure constant Q.f

g(CX ) 2 (Clf/2~)~ "" 'r (3 —Q.„/2). (8)

If b, nH = 4 —a.tt is the deviation of the dimension of
space-time from four and if b, g =g,h„,—g,„~ desig-
nates the difference between the standard theoretical
prediction and the experimental result for the electron
g factor, one obtains to first order in b, o.H

=2m 250H = Ag,
o.f C+ lnm.

where Cis Euler's number.

It is interesting to note that the difference b, g
between the latest theoretical and experimental
values is larger than two standard deviations and can-
not be accounted for by various corrections. ' " If the
reason for this difference is a nonvanishing b, nH we
obtain for the dimension of space-time

aH = 4 —(5.3 +2.5) x 10

Conceptually, a dimensionality of space-time less
than four implies a reduction of the vacuum fluctua-
tions surrounding the electron. The resulting radiative
corrections are therefore smaller than in standard
quantum electrodynamics. It is certainly a challenge
for future research to investigate whether or not the
deviation of the dimension of space-time from four
can be made more statistically significant than the
present work suggests. Furthermore, the question of
possible evidence for such a small deviation in other
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areas of Physics deserves attention.
We wish to thank Professor P. Gruber and Professor

R. Schnabl for bringing some earlier work to our atten-
tion.
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