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Velocity-Vorticity Patterns in Turbulent Flow
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Direct numerical simulation of the Navier-Stokes equations is used for the investigation of local
helicity fluctuations in plane Poiseuille (channel) and Taylor-Green vortex flows. It is shown that
in regions of high dissipation, the cosine of the angle between velocity and vorticity is evenly distri-
buted; in regions of low dissipation, the velocity and vorticity vectors have a tendency to align. It is
also shown that near the central part of the channel, velocity and vorticity vectors have a strong

tendency to be aligned, while in the buffer region, all angles are nearly equally probable.

PACS numbers: 47.25.Fj, 47.30.+s

The Navier-Stokes equations in rotation form are
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where the vorticity is @ = ¥V X u. It is plausible that re-
gions of large turbulent activity are correlated with re-
gions of large uX w and, hence, relatively small helici-
ty density u-w. It has also been suggested!~> that he-
licity fluctuations may be related to coherent struc-
tures and small-scale intermittency in turbulent flows.
Some support for this latter conjecture has been given
by analysis of geophysical®® and laboratory experi-
mental data.2 Here we investigate the role of helicity-
density fluctuations using direct numerical simulation
of turbulent channel flow and the Taylor-Green vor-
tex.

We have used a pseudospectral computer code’® to
solve the Navier-Stokes equations. For channel flow,
periodic boundary conditions are assumed in the
streamwise (x) and spanwise (y) directions, and the
no-slip condition is imposed at the walls. Typical runs
use 32 Fourier modes in the streamwise and spanwise
directions and 33 Chebyshev modes in the normal (z)
direction. The channel dimensions are 278 (x), 78
(»), and 28 (z) where & is the channel half-width.
The Reynolds number is 194 based on the wall shear
velocity, channel half-width, and kinematic (molecu-
lar) viscosity. The turbulence evolves significantly on
a nondimensional time of 10. The code is run long
enough (7==60) for a nearly stationary-state turbulent
flow to develop. No subgrid turbulence model is used
since the grid gives adequate resolution of all energy-
containing scales. The Taylor-Green vortex (at
Ngr.=1500) is computed using a very special and effi-
cient code based on symmetries in the Taylor-Green
initial conditions.1°

In Fig. 1(a), we plot the non-normalized probability
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density P(cosf) where cosf =u-w/(|ul|w|) for chan-
nel flow. All information plotted is from a single reali-
zation and a single time. No averaging is done; how-
ever, all samples tested gave the same mean result.
An unexpected and somewhat striking feature of the
distribution is the appearance of two peaks correspond-
ing to |cos#| =0 and |cos®|=1. The cosf =0 peak can
be explained by the existence of the (quasilaminar)
viscous sublayer close to the wall where u-w=0.
Indeed, the same probability-density function mea-
sured in the center region of the channel (z, =zu,/
v > 15) [see Fig. 1(b)] does not show the maximum at
cos# =0 while the sharp peak at |cosf|=1 persists.
When the distribution function is evaluated by exclud-
ing both the wall and central part of the channel
(15 < z, < 40), the probability density P(cosf) [see
Fig. 1(c)] is much flatter.

We conclude that, while the vorticity is mainly in
the spanwise direction near the rigid wall, towards the
center of the channel, the large-scale vorticity is being
convected by and aligned with the mean flow. The
large-scale turbulent features away from the walls are
approximately force-free or Beltrami-like in character
in that uX w is relatively small. This characterization
of flow structures away from the walls as approximate-
ly force-free flows may be useful in developing models
of coherent eddies in turbulent flows. Indeed, recent
studies!! of free shear flows show similar behavior of
large-scale flow features.

The role of helicity-density fluctuations is clarified
by analyzing the probability distribution P(cosé’),
where cosf’'=u’-w’/(Ju'|lw’]), w=u—(u) and
o' =V Xxu' are the fluctuating velocity and vorticity
components and () indicates horizontal average. As
shown by the results plotted in Fig. 2(a), the distribu-
tion of cosf’ over the full channel is much flatter than
the cos@ distribution plotted in Fig. 1(a). However, in
the region 15 < z, < 40, the distributions of cosf and
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FIG. 1. The probability density for the distribution of the
angle between velocity and vorticity in channel flow: (a)
throughout the channel; (b) in the center part of the chan-
nel (zy >15); (c) in the buffer region of the channel
(15 < z4 < 40).
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FIG. 2. The probability density for the distribution of the
angle between fluctuating velocity u’ and vorticity o’ (a)
throughout the channel; (b) in the buffer region of the
channel (15 < z,4 < 40).

cos@’ are similar [cf. Figs. 2(b) and 1(c)]. We con-
clude that the sharp peak at |cos@|=1 seen in Figs.
1(a) and 1(b) is related to properties of the large-scale
flow.

Results from conditional sampling in regions where
the dissipation, S,j2=%(8u,/6xj+6uj/6x,-)2, is large
and small yield drastically different probability distri-
butions. In Figs. 3(a) and 3(b) we plot probability
densities for the channel and Taylor-Green problems,
respectively. In sampled regions where S,f >0.3
xmaxS7, the distribution is nearly uniform. In re-
gions where S7 <0.05maxS;} [Figs. 4(a) and 4(b)]
there is a high probability that the velocity and vortici-
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FIG. 3. The probability density for the distribution of the
angle between velocity u and vorticity @ conditionally sam-
pled in the region where dissipation is greater than 30% of
its maximum value: (a) in the outer part of the channel
(15 < z4 < 100); (b) in the Taylor-Green vortex at ¢=8.6.

ty are nearly aligned. This result may be useful to
understand turbulent flow structures.

A related result of Arnold'? and Moffatt!3 is that
there exist steady, helical Euler flows with arbitrary
chaotic, streamline topologies in which u and @ are
everywhere parallel: u=Ae with A constant.
Although the relation between steady, inviscid Euler
and time-dependent viscous flows may seem tenuous,
the high probability that |cosf|=1 in regions of low
dissipation maybe suggests that further study of the
Arnold-Moffatt flows is warranted.
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FIG. 4. The probability density for the distribution of the
angle between velocity u and vorticity @ conditionally sam-
pled in the region where dissipation is less than 5% of its
maximum value: (a) in the outer part of the channel
(15 < z4+ <100); (b) in the Taylor-Green vortex at ¢ =8.6.
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