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Velocity-Vorticity Patterns in Turbulent Flow
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Direct numerical simulation of the Navier-Stokes equations is used for the investigation of local
helicity fluctuations in plane Poiseuille (channel) and Taylor-Green vortex flows. It is shown that
in regions of high dissipation, the cosine of the angle between velocity and vorticity is evenly distri-
buted; in regions of low dissipation, the velocity and vorticity vectors have a tendency to align. It is
also shown that near the central part of the channel, velocity and vorticity vectors have a strong
tendency to be aligned, while in the buffer region, all angles are nearly equally probable.

PACS numbers: 47.25.Fj, 47.30.+s

The Navier-Stokes equations in rotation form are

Bu P 1—UX~= —+ —+ —0 + p+Q,
Bt p 2

where the vorticity is ro = '7 && u. It is plausible that re-
gions of large turbulent activity are correlated with re-
gions of large u x ~o and, hence, relatively small helici-
ty density u ao. It has also been suggested' 5 that he-
licity fluctuations may be related to coherent struc-
tures and small-scale intermittency in turbulent flows.
Some support for this latter conjecture has been given
by analysis of geophysical6 s and laboratory experi-
mental data. 2 Here we investigate the role of helicity-
density fluctuations using direct numerical simulation
of turbulent channel flow and the Taylor-Green vor-
tex.

We have used a pseudospectral computer code9 to
solve the Navier-Stokes equations. For channel flow,
periodic boundary conditions are assumed in the
streamwise (x) and spanwise (y) directions, and the
no-slip condition is imposed at the walls. Typical runs
use 32 Fourier modes in the streamwise and spanwise
directions and 33 Chebyshev modes in the normal (z)
direction. The channel dimensions are 27ro (x), m. 8
(y), and 25 (z) where 5 is the channel half-width.
The Reynolds number is 194 based on the wall shear
velocity, channel half-width, and kinematic (molecu-
lar) viscosity. The turbulence evolves significantly on
a nondimensional time of 10. The code is run long
enough (t = 60) for a nearly stationary-state turbulent
flow to develop. No subgrid turbulence model is used
since the grid gives adequate resolution of all energy-
containing scales. The Taylor-Green vortex (at
NR, =1500) is computed using a very special and effi-
cient code based on symmetries in the Taylor-Green
initial conditions. '

In Fig. 1(a), we plot the non-normalized probability

density P(cosH) where cosH=u cu/(IuIItoI) for chan-
nel flow. All information plotted is from a single reali-
zation and a single time. No averaging is done; how-
ever, all samples tested gave the same mean result.
An unexpected and somewhat striking feature of the
distribution is the appearance of two peaks correspond-
ing to IcosH I

= 0 and IcosH I
= 1. The cosH = 0 peak can

be explained by the existence of the (quasilaminar)
viscous sublayer close to the wall where u to=0.
Indeed, the same probability-density function mea-
sured in the center region of the channel (z+ = zu, /
v & 15) [see Fig. 1(b)] does not show the maximum at
cosH = 0 while the sharp peak at

I cosH I
= 1 persists.

When the distribution function is evaluated by exclud-
ing both the wall and central part of the channel
(15 & z+ & 40), the probability density P (cosH) [see
Fig. 1(c)] is much flatter.

We conclude that, while the vorticity is mainly in
the spanwise direction near the rigid wall, towards the
center of the channel, the large-scale vorticity is being
convected by and aligned with the mean flow. The
large-scale turbulent features away from the walls are
approximately force-free or Beltrami-like in character
in that uxor is relatively small. This characterization
of flow structures away from the walls as approximate-
ly force-free flows may be useful in developing models
of coherent eddies in turbulent flows. Indeed, recent
studies" of free shear flows show similar behavior of
large-scale flow features.

The role of helicity-density fluctuations is clarified
by analyzing the probability distribution P (cosH' ),
where cosH'=u' to'/(Iu'II''I), u'=u —(u) and
~' = V x u' are the fluctuating velocity and vorticity
components and ( ) indicates horizontal average. As
shown by the results plotted in Fig. 2(a), the distribu-
tion of cosH' over the full channel is much flatter than
the cosH distribution plotted in Fig. 1(a). However, in
the region 15 & z+ & 40, the distributions of cosH and
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cos8' are similar [cf. Figs. 2(b) and 1(c)]. We con-
clude that the sharp peak at !c 0!=1

a) and 1(b) is related to properties of the large-scale
flow.
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