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Square versus Roll Pattern at Convective Threshold
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We present observations and measurements of convection between two moderately conducting
plates. A stationary square pattern is observed just at the convective threshold. But at high Ray-
leigh number the preferred convective pattern becomes the usual roll structure. The transition
from squares to rolls involves an unexpected Hopf bifurcation.

PACS numbers: 47.25.Qv, 47.20.+m

The study presented here was motivated by the ob-
servation of a squarelike cellular convective pattern at
convection threshold in a Rayleigh-Benard experi-
ment, with horizontal sapphire boundaries which con-
duct heat well. ' This structure disappeared as soon as
we increased the Rayleigh number NR and left a classi-
cal roll structure. As some theoretical studies predict
square patterns at threshold resulting from poorly
heat-conducting boundaries, we have hypothesized
that the large but finite thermal conductivity of sap-
phire is at the origin of our square pattern.

Some experiments have already been performed
with poor thermal conductors but they have not inves-
tigated the convective pattern just at threshold. 2 4 We
therefore replaced our sapphire plates by glass slabs of
similar dimensions but having a lower heat conductivi-
ty. We then observed and measured clear square-
pattern convection near threshold, stable in a domain
of Rayleigh number larger than in the sapphire case,
so that we were able to study the evolution of the pat-
tern from squares to rolls. We were surprised to find
that it occurs through a Hopf bifurcation leading to os-
cillation of the entire structure.

This square pattern has nothing to do with high-
Rayleigh-number bimodal convection, 2 which involves
two very different sets of rolls. The observation of
such a time-dependent behavior so close to the thresh-
old is, as far as we know, completely new and should
make it amenable to analysis by a perturbation expan-
sion.

The cell consists of a Plexiglas annulus placed
between two glass discs. The height of this cylindrical
cell is 1.975 mm and its aspect ratio (radius/height:
R/d) is 20. The glass plates are 6 mm thick.

We used a 5-centistoke silicone oil whose Prandtl
number Np (v/K) equals 70. The thermal conductivi-
ty ratio P between glass and oil is 7. This setup is
placed between two other glass plates, which permits
thermal regulation by water circulation. This ap-
paratus, completely transparent, allows optical mea-
surements.

Overall qualitative information is derived from sha-
dowgraph and Schlieren pictures or movies. Local
quantitative measurements are obtained by a recording

of the deflection of a laser beam induced by the index
gradient inherent to convective motions. A photo-
diode measures the two components of the index gra-
dient integrated over the height of the cell. A micro-
computer monitors stepper motors and scans the con-
vective pattern on a square lattice of 16&& 16 points ex-
tending typically over four convective wavelengths.
The amplitudes of the convective modes are obtained
by performing a two-dimensional fast Fourier transfor-
mation (2D FFT).5

In the experiment, we measure the temperature
difference between the water circulation at the top and
at the bottom which, because of the heat conductivity
of the boundaries, differs from that applied to the oil
layer. We then evaluate the reduced Rayleigh number
e = (NR —NR, )/NR, taking into account the convec-
tive heat flux. 6

The different features that we present here have
been obtained by use of "perfect" patterns, that is,
convective structures without any structural defect.
Such structures were initiated by induction of a parallel
roll structure at high Rayleigh number by the method
of Chen and Whitehead. 7

After the induction, if we lower the reduced Ray-
leight number e below 0.024, we observe a stationary
square pattern. This means that a second set of rolls
has appeared perpendicular to the first set with the
same wave number and with an amplitude which is
quite close, as seen in Fig. 1(a). This square pattern
also appears when we increase the Rayleigh number
above the convective threshold without proceeding
through any induction. But in this case the square pat-
tern contains several structural defects.

The bifurcation between the conductive and the
convective state seems imperfect, as we may see in
Fig. 2. The Plexiglas sidewall, whose conductivity is
twice that of the oil, may produce horizontal thermal
gradients at the sidewall. But in this case the convec-
tion should appear first at the sidewall. On the con-
trary, we observe that the convective pattern appears
first in the center of the convective cell.

When we increase e above 0.024, a Hopf bifurcation
takes place and the amplitudes A and B, measured with
the 2D-FFT technique in the center of the cell, exhibit
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FIG. l. (a) Focalization picture of a stationary square pat-
tern, e =0.020. Notice that this structure is accommodated
quite well in the cylindrical cell. The white lines represent
cold streams and the dark lines hot streams. This picture
has the periodicity of the convective structure. (b), (c)
Strioscopic pictures of the oscillating square structure,
e = 0.047. Using this technique, we are able to isolate a sin-
gle system of rolls. Each white line corresponds to the
center of a roll so that the picture presents a periodicity twice
that of the convective pattern. These two pictures corre-
spond to the same structure: (b) shows the dominant roll
set and (c) the perpendicular roll set. (d) Focalization pic-
ture of the stationary roll pattern, ~=0.2: The dominant roll
set has invaded nearly the entire cell, leaving only two small
grain boundaries.

oscillating behavior in phase opposition with time. At
e&=0.024 the oscillation is barely visible and quite
sinusoidal. Its amplitude increases with e and finally
the oscillation exhibits a relaxation behavior, as can be
seen in Fig. 3. A movie of this phenomenon shows
that the two perpendicular sets of rolls alternately in-
vade nearly the entire cell. The symmetry (over one
period) between the two sets is conserved when
e» & e & 0.057, as may be seen in Figs. 3(a) and 3 (b),
but it breaks down when e ) 0.057, and leaves one set
of rolls dominant. This last point clearly appears on
our amplitude recordings, plotted in Fig. 3(c), where
A2 is greater than B2 while both signals still show os-
cillating behavior. The set of rolls whose amplitude is
greater when a =0.057 is reached remains as the dom-
inant one. From the movie, it appears that the dom-
inant set extends from one side of the cell to the oppo-
site side cutting the second set into two parts [see Figs.

FIG. 2. Square of the roll amplitudes A' and B2 (in arbi-
trary units), obtained by our performing of a 2D FFT of the
pattern center, vs the reduced Rayleigh number e. Notice
that the stationary square pattern is limited to a very small
domain in ~, ~ & 0.024, and that the oscillating region is
confined in the range 0.024 & e & 0.057. In the lower right
corner we have redrawn an enlarged portion of this curve in
the vicinity of the threshold. In the upper left corner we
have drawn separately the behavior of both roll amplitudes
in the oscillatory regime. In this picture it is the set of rolls
with the amplitude A which becomes dominant when we in-
crease ~.

1(b) and 1(c)]. These two parts, which are next to the
sidewalls, periodically extend —trying, one might say,
to join at the center —but do not succeed and retreat
towards the sidewall. As we slightly increase e these
two parts become confined to the sidewall, leaving
most of the cell to the dominant roll set. This descrip-
tion is also valid in the symmetric oscillatory phase,
except that the two parts succeed in joining, and the
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FIG. 3. Time recordings of the square of the roll ampli-

tudes (in arbitrary units) in the oscillatory regime. The am-
plitudes have been obtained with the 2D-FFT technique.
(a) Sinusoidal oscillation. (b) Relaxational oscillation. (c)
The symmetry between the two roll sets is now broken, but
oscillatory behavior is still present.
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dA/dt = eA —EA A' —FABB', (la)

dB/dt = e B—EB2B'—FBAA', (»)
where A and B are the amplitudes of each set of rolls,
and E and F parameters of nonlinearity. If E & F the
stationary state corresponds to the case of spatially
homogeneous equal amplitudes A2= B2=e/(E+ F)
and thus to a square pattern. Experimentally, we
found this type of Landau evolution (see Fig. 2). On
the contrary, if F & E the stationary solution of Eqs.
(1) is a roll pattern with an amplitude A =e/E. The
transition occurs when E= F and in its vicinity one
may notice that the ratio between the two slopes
E/(E+F) = —,. (When Np and P tend to infinity it
equals ll2. 2273. '3)

The oscillating behavior may be seen as a transition
from a square pattern to a roll pattern. As far as we
know this kind of transition has not yet been studied.
The dynamical behavior is especially interesting since
it occurs very near the convective threshold where per-
turbation analysis should apply. However, the ampli-
tude equations (1) cannot describe this transition
since, being derived from a potential, they forbid any
oscillatory behavior. We have not yet arrived at any
convincing interpretation of this oscillation. As in
Nicolis and Prigogine, ' we have considered the non-

roles of the two sets are inverted.
In the asymmetric oscillatory regime, a slight in-

crease in e causes the dominant set of rolls to invade
nearly the entire cell, confining the two oscillating
grain boundaries very near the sidewalls [see Fig.
1(d)]. The oscillation then becomes barely visible. At
the center of the cell the convective pattern has the ap-
pearance of the classical stationary roll pattern.

A square pattern has been predicted in the case of
poorly conducting horizontal boundaries in various
studies, s 9 which rely on the assumption that P tends
to 0. This is far from our situation, especially since
those studies use the property that the wave number
K, tends to 0 with P, while in our case K,
= 3.00 +0.05, close to the value 3.117 obtained when

P tends to infinity. However, Jenkins and Proctor'0
investigated the full domain of P and determined the
regions in the (P,Xp) plane where squares and rolls
should be observed. With the Xp we used, they con-
clude that squares should be observed when P ( 1 and
rolls when P & 1, but-this is not the case. This con-
tradiction is even stronger when we consider the
square pattern observed with the sapphire boundaries
(P =250), in a similar apparatus. In fact, when P
equals infinity, the square pattern has been found to
be only weakly unstable and is stabilized by a tempera-
ture dependence of a convective parameter. "

Following Newell and Whitehead'2 we introduce two
coupled amplitude equations describing the square pat-
tern:

variational Volterra-type amplitude equations'5 for
which oscillatory behavior is possible. However, this
model, which is spatially homogeneous, requires that
the two sets of rolls be so strongly different that this
cannot correspond to our situation. It appears from
the film that the spatio-temporal features are related to
the geometry of the cell, since the period of oscillation
is determined by the transit time of the grain boun-
daries through the cell. From the 2D-FFT measure-
ments in the center of the cell, the oscillation occurs
with a Hopf bifurcation at e„=0.024 (see Fig. 1), its
amplitude increases as (e —ez)', and its period grows
from 4600 s at ez to 16800 s when a=0.0057. This
long time can only be compared to the horizontal ther-
mal diffusion time R2/Dr=22500 s, and we plan to
perform further experiments with different cell
geometries in order to test this relation.

As we see in Fig. 2, the stationary roll amplitude
obeys a Landau-type law but its extrapolated threshold
differs from that of squares: e„=0.012. However, the
ratio between the slopes of A vs e in stationary
squares and in rolls equals —,

' within a few percent, as
predicted by Eqs. (1) near the square-to-roll pattern
transition.

In this experiment we have observed and measured
a square convective pattern which is stable near the
convective threshold and destabilizes in favor of the
usual roll pattern when we increase e. Koschmieder
has also observed a square pattern near threshold but
it was unstable and he argued that this pattern was
generated by the square container he used. Obviously,
this argument cannot hold with our cylindrical cell.
However, Koschmieder also used a glass plate at the
top and this confirms the qualitative idea that the
square pattern is related to the conductivities of the
horizontal boundaries as inferred by theoretical stud-
ies. Nevertheless, our results are in quantitative
disagreement with these predictions.

We therefore propose the following assertion: As
long as the heat conductivity of the horizontal boun-
daries is finite, convection at high Prandl number ap-
pears at threshold with a square pattern, but becomes a
roll pattern at higher Rayleigh number, the domain of
e where squares exist becoming smaller as P is in-
creased. To be specific, when P=7 the domain ex-
tends up to e = 0.057, while with P = 250 it is just visi-
ble and we estimate its extension to be 0.003. It would
be interesting to check our assertion and to determine
if the finite conductivity is the only origin of the
square pattern, since it seems that strong dependence
of the viscosity on the temperature might also induce a
square pattern. '6 Note that this pattern selection is
reminiscent of that which occurs with hexagons and
rolls in non-Boussinesq Rayleigh-Benard convection'
(except for the dynamical behavior).

The nature of the convective pattern at threshold is
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the first step in the understanding of convection. Here
we have observed a square pattern whose three-
dimensionality could lead to unexpected behavior such
as our oscillatory regime. The very existence of such a
regime raises the problem of the nonvariational char-
acter of convection in finite-size containers near
threshold.

We are grateful to M. Dubois, P. Berge, P. Manne-
ville, L. Tuckerman, and Y. Pomeau for stimulating
discussions, and to C. Poitou, M. Labouise, and
B. Ozenda for their technical assistance.
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