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Superstrings at High Temperature
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The behavior of ten-dimensional superstrings at high temperatures is studied by use of the mi-
crocanonical ensemble. We focus on closed superstring theories. The massive string excitations
alone have negative specific heat. Such a system can reach equilibrium with the zero modes of the
string if the energy carried by zero modes is less than a given fraction of the total energy. The tem-
perature can then exceed the Hagedorn temperature. Some consequences for the evolution of the
universe are discussed.
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The recent construction of anomaly-free superstring
theories in ten dimensions' has drawn wide interest.
These theories have phenomenologically realistic low-
energy limits and they are believed to be ultraviolet
finite. Furthermore, the familiar gravitational and
Yang-Mills interactions are contained in the low-
energy expansion of these theories. This encourages
the belief that a consistent quantum theory that unifies
all known interactions may be at hand. Some elegant
compactification schemes which yield a low-energy su-
pergravity theory coupled to a supersymmetric grand
unified theory have also been proposed. 3 If the funda-
mental interactions of matter are really described by a
superstring theory, then the evolution of the Universe
may differ from that of the standard cosmological
model, especially at scales approaching the Planck
mass.

The first step in formulating a string cosmology is to
understand the behavior of strings at high energy den-
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sity and temperature. In this paper we study the ther-
modynamics of ten-dimensional superstrings with par-
ticular emphasis on the more phenomenologically
promising heterotic string. We shall see that open
superstring models have strikingly different thermo-
dynamic properties from closed superstring models.
While the canonical ensemble provides a reasonable
thermodynamic description of a gas of open super-
strings, it fails to describe the statistical mechanics of a
gas of closed superstrings. It is essential to use the mi-
crocanonical ensemble to understand the behavior of
this system. This is highlighted by the fact that the
massive excitations of a closed superstring system
have negative microcanonical specific heat. In this
respect their behavior has many similarities to that of a
black hole.

To calculate the thermodynamic observables of a
string gas, we must derive the density of states.
Heterotic superstrings are described by transverse and
fermionic coordinates
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with h = —,
' (I+y»), S~ a ten-dimensional Majorana-

Weyl light cone spinor, and 0 & cr & 7r, i, a = 1, . . . , 8.
In this basis the mass operator M is given by
a'(M)2=4N, with Nan eigenvalue of the operator
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where 04 is the Jacobi 0 function. The heterotic
string is a hybrid of the bosonic and fermionic strings.

I

To determine the degeneracy of the eigenvalues of N,
we use the generating function P(x) = giv= & P(N)x,
where P(N) is the degeneracy of eigenvalue N. For
the Veneziano 26-dimensional bosonic string Pz(x)
= (g„=& (1 —x")I 2". The ten-dimensional super-
string is the product of bosonic and fermionic generat-
ing functions,
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The degeneracy of states with mass M is given byz

d(M) =const&&PF(a'M2//4)P&(n'M /4),

where Pz is slightly different from Pz because of the
contribution of states from the compactification on the
sixteen-dimensional self-dual even integral lattice,

divisors of m. The behavior of P(N) for large N has
been determined by Huang and Weinberg, 6 generaliz-
ing the work of Hardy and Ramanujan. 7 It is given
by PI(N) —N D+ )i exp[2'. (D/6)' VX] for D
transverse dimensions. For D =24, it is thus P~~ (N)—N z7i4exp(4n JN ). To determine P(N), we use
contour integration,
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where a.7(m) is the sum of the seventh powers of the

P (N) = (I/27ri) dz/[z"+F08(0, z)].
m=2, 4, ...

We then map 04(0,z) to 02(0,e '"'), since e '"' is
small for z approaching the stationary point z 1

Since Hz(0, q) —2q'i4 for small q, this gives
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We then evaluate the contour integral by the saddle-point method which gives PF(N) —N "i4exp(7r J8&N ).
To determine Pz we need the sum g ~=pP~(N 4m)a7(2—m) Usin. g a7(m) —m, we find Pz(N) —N
x exp(47r~N ). The density of states in mass space is then

p(m) ~ d(m) [(~ ) m] exp[(2+ J2)~(n )i zygo]

and is of the generic form

p(m) = cm exp(bm), (5)

with a = 10 and b = (2+J2)m (n') ' for the heterotic string. The corresponding analysis for open (type I) super-
strings yields a = —, and b =7r&8(a')' z, while for conventional closed superstrings (with no Yang-Mills gauge
group) one finds a = 10 and b = n.J8(n')'iz.

One approach for discussion of the thermodynamics of such strings is the canonical ensemble. The partition
function is
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where Vis the nine-dimensional volume. Expanding the logarithm and integrating over the momentum gives
r & 5
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where q is the infrared cutoff below which the asymp-
totic form of the density of states Eq. (5) is no longer
valid and K„(x) is the modified Bessel function. Us-
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ing the asymptotic form of K„(x), K„(x) (1/
Wx) e ", we see that
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where I (a,x) is the incomplete gamma function and
Tp = 1/b. The canonical partition function diverges for
T & Tp and thus Tp seems to describe a maximum
temperature for thermodynamic equilibrium. 8 The
thermodynamic observables of interest may then be
calculated from Z: P= TdinZ/8 V, Cz=d(E)/dT,
and (E) = Tz 8 1 Zn/8 T.

For a ~ —", , the pressure, energy density, and
specific heat diverge as the temperature approaches To.
This behavior is consistent with the idea that To is the
maximum temperature of the system. For a ) —", ,

l

however, we see that the pressure and energy density
are constant as the temperature approaches Tp, and for
a & —", , the specific heat is also constant as T ap-

proaches Tp. This behavior is contrary to the notion
that Tp is the limiting temperature of the system.
Since the energy density or specific heat does not
diverge at To, there is nothing to prevent one from
passing through To by pumping energy into the sys-
tem, and yet the canonical ensemble does not provide
a description of the system for this range of observ-
ables.

This peculiar behavior warrants careful examination.
In particular it is wise to check the size of energy fluc-
tuations. We find that the mean-square energy fluc-
tuation [ (E ) —(E) ]/(E) z is larger than 1 for
p = E/ V & pp = (I/~ —'2' ) (q" ' ') (2m b)

When the energy fluctuations are of this magnitude,
the canonical ensemble is no longer a good thermo-
dynamic description of the system, and one should
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reexamine the system using the more fundamental microcanonical ensemble. In this ensemble the total energy E
is fixed and one counts the number of microstates which yield a given macrostate,

(8)

ter the mass of the black hole.
We now derive the corresponding condition for the

massive excitations of a heterotic string to be in equili-
brium with its massless modes (radiation). Let the to-
tal energy of the massive excitations be E, and the en-
ergy of the massless excitations be E, . The total
number of configurations for this system is
exp(S, +S,), where S„S„denote the entropy of the
massive and massless excitations, respectively. The
most probable values of E, and E„will be those which
maximize S, + S, with the constraint that the total en-
ergy is fixed. This means BS,/BE, = BS„/BE, and
B2S,/BE2+ B2S„/BE, ( 0. The first condition implies
T, = T, = Tand the second may be rewritten as

(1/ T) (BT/BE, ) & T(B'S,/BE,') = aT/E, '
= (1—bT)'/aT.

Now in ten-dimensional space-time the energy of a
massless gas of bosons and fermions is given by
E=a. VT' with a. = (8m /3465) [nb+ (1 —1/2 )nf]
The above inequality becomes an equality for a (max-
imum) temperature T, given by

20bE —9a + (81a +40abE)'
20(bE —a)

Given this maximum temperature, we know that
E, ( (E,),„=E«„~+aT,/(1 —bT, ). The condition
for equilibrium between the massive and massless ex-
citations is then V( (E„),„/a. Tto. As an example,
consider E=100Mp, where Mp is the Planck mass.
We choose the string tension such that b= 1/Mp.

'

Then T = 1.18Mp, (E,),„=36Mp, and V is less than
1.2&& 10 (Mp) 9= (0.37/Mp)9. We have used
a =5.7&&10 corresponding to nq= nf =4032 for the
massless modes of the heterotic string. For the total
energy E very large, these results become T, =Mp,
(E,),„=E, and V( b' E/a. .

If the volume of the system is below this critical
value for a given total energy E, then the massive
string excitations can exist in equilibrium with the
massless excitations at a temperature between To and
T, . When the volume is greater than this critical
value, the massive string excitations cannot be in
equilibrium with radiation at any temperature. They
must decay into massless modes to achieve equilibri-
um. One important offshoot of this discussion is the
realization that a system consisting of heterotic strings

n

n(E, V) = g, , Ij p(m, ) dm, d'p, ~(gE, —E)~(g p, ).
(2m. )9 n!

Following Frautschi, 9 and Carlitz, to we find that for
a & —", and p & po, the density of states as a function
of energy has the same functional form as the density
of states as a function of mass, II (E, V) = VE
& exp(bE).

This density of states thus applies to the description
of heterotic strings but not to that of open super-
strings. This is the fundamental source of the differ-
ence in their thermodynamic behavior. Furthermore,
the most probable number (n) of strings is such that
the favored configuration is for n —1 strings to carry
as little energy as possible and for one string to carry
the remaining energy. ' The condition p) po is
equivalent to the condition E » n q There. fore,
n —1 strings like to carry energy Y1 and the remaining
string the energy E —(n —1)q, which is much greater
than q This i.s the source of the large energy fluctua-
tions in the canonical ensemble. The favored thermo-
dynamic configuration is highly inhomogeneous.

There is another remarkable fact which indicates the
failure of the canonical ensemble to describe the phys-
ics of a gas of hot heterotic strings. Given the micro-
canonical density of states fI (E, V), we can compute
the microcanonical thermodynamic observables. The
entropy S is S = lnA (E, V) = —a lnE+ bE. The tem-
perature T is formally given by T= (Bs/BE) '=E/

bT, =
(bE a). For positiv—e energy E„ the temperature
exceeds I/b. The specific heat is C = ( —1/T ) (B S/
BE ) '= ( —1/T2)(E2/a). This is negative! In the
canonical ensemble the specific heat is proportional to
the mean-square energy fluctuations and is thus always
positive. "' A gas consisting purely of massive super-
string excitations behaves in many respects like a black
hole. '3 Recall that a black hole of mass M is character-
ized by a temperature T= I/(8m M), where we have
set G equal to 1. The specific heat dM/dt is also nega-
tive. A black hole (and the massive string excitations)
can never be in thermal equilibrium with an infinite
heat reservoir. Imagine a body of negative specific
heat immersed in an infinite heat bath of temperature
T. Suppose now that the temperature of the body fluc-
tuates above that of the reservoir. Heat will then flow
from the body to the reservoir. This lowers the energy
of the body and raises its temperature. The body thus
radiates even more heat until it evaporates completely.
This is clearly an unstable situation. A body with neg-
ative specific heat can, in contrast, be in equilibrium
with a finite-heat bath. In the black-hole case the con-
dition for stable equilibrium is that the energy of the
heat bath (in this case radiation) be less than one quar-
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can reach equilibrium above the Hagedorn tempera-
ture, provided that the energy in the higher string
modes is greater than a certain fraction of the total en-
ergy. There is no maximum energy density either.

The microcanonical ensemble description of a gas of
type-I (open) superstrings is more complicated to dis-
cuss. If the energy is below a critical value, the micro-
canonical predictions are equivalent to the canonical
predictions. When the energy exceeds this value, the
energy fluctuations are large and the microcanonical
ensemble again becomes the fundamental ensemble.
The density of states can be computedto and has the
same basic features as the one discussed. It is, howev-
er, more complicated. Details will be presented. t4

We conclude by discussing the possible evolution of
the universe for a heterotic string theory. This is very
sensitive to the initial conditions. We may instead
imagine the time-reversed process of the present
universe contracting. As it contracts, its temperature
would rise and the universe would consist of a gas of
massless string excitations in thermal equilibrium. As
the temperature approaches To, the higher string
modes can be excited. When the volume of the
universe falls below the critical value, there is a phase
transition to a system of massive and massless string
excitations in thermal equilibrium above the tempera-
ture To. Of course, the dynamics of string interactions
and the compactification of the ten-dimensional space
to four dimensions may alter our conclusions. These
questions are presently under study.
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