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This paper is a continuation of an earlier study of the ground-state energy density E, in two-
dimensional supersymmetric field theories. Lattice strong-coupling techniques are used to calculate
E to eleventh order, extending the previous calculation by four additional orders. Our results con-
tinue to suggest that supersymmetry invariance is restored in the continuum limit. Moreover, new
and unexpected large-order behavior in the lattice perturbation-expansion coefficients is revealed in

this high order of perturbation theory.
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In a previous Letter! we reported a strong-coupling
lattice calculation of the ground-state energy density
Ey for a class of two-dimensional supersymmetric
Wess-Zumino field theories whose Euclidean Lagrang-
ian is given by

LE = %(vu(b)z + %J'hv,ﬁ#
+ 588" ()0 + 32218 (6) 12 6))
Here, ¢ is a two-component Majorana field, ¢ is a real
scalar field, and

S(p)=gp2k+],

t2' 3

k=0,1,2, ... . )

It is known tha supersymmetry is not broken
dynamically for this class of theories, and that there-
fore the ground-state energy density must vanish. Our
motivation for performing a direct calculation of E,
was to see if lattice strong-coupling calculations are
useful for theories having a supersymmetry invariance:
Introducing a lattice scale a explicitly breaks supersym-
metry.* However, if in the continuum limit we find
that £y=0, then we have a signal that supersymmetry
is restored as a — 0. On the basis of a seventh-order
calculation of Ej, we concluded in Ref. 1 that a lattice
regularization does not break supersymmetry per-
manently.

We have now extended the strong-coupling calcula-
tion of Ej to eleventh order. We report the results of
this calculation in this Letter. In brief, our findings
continue to indicate that supersymmetry is restored in
the continuum limit ¢ — 0.

It is known that the conventional lattice extrapola-
tion methods used in this paper and in Ref. 1 fail in
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other quantum theories in sufficiently high order.’
For example, for the anharmonic oscillator whose
Hamiltonian is given by

H=p%*2+ gx*V, 3)

optimal accuracy in the strong-coupling expansion is
achieved in order five for N =2; starting with order
six, the accuracy gradually decreases with increasing
order of perturbation theory. Thus, the lattice extrap-
olants appear to behave like the partial sums of a
divergent asymptotic series; they approach the exact
solution for a while and then veer away. Furthermore,
the order of perturbation theory in which optimal ac-
curacy is achieved gradually decreases as N increases.
For the supersymmetric theory of Eq. (1) with k=1,
the accuracy appears to worsen after order seven. The
order-eight result for Ej is slightly less accurate (it ap-
pears to diverge away from 0) and in order nine the ac-
curacy decreases slightly further. However, a surpris-
ing turnabout occurs in still higher orders of perturba-
tion theory. The order-ten value represents a dramatic
improvement in accuracy and in order eleven there is a
further improvement. It is possible that this faltering
in orders eight and nine is a temporary effect and that
this series converges. At least it has not yet passed its
optimum at eleventh order.

The procedure for calculating FE, is completely
described in Ref. 1. The strong-coupling lattice expan-
sion for Ej has the form

Eo=g 3 24,s1, @
n=0

where z=(ag) . The coefficient 4, is computed
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TABLE 1. Numerical values of the first 22 strong-
coupling vertices for the k=1(¢%) supersymmetric theory.
These vertices are accurate to sixteen decimal places. This
accuracy is required to calculate 4, dependably for large n
because there is extensive cancellation between positive and
negative graphs.

TABLE II. Number of distinct, connected vacuum graphs
in each of the first eleven orders of strong-coupling pertur-
bation theory. In the ninth, tenth, and eleventh orders the
graphs were enumerated with a computer. On a Ridge com-
puter (whose speed is comparable with VAX 11/780) the
calculations in orders eight, nine, ten, and eleven take 14
min, 1.3 h, 10.5 h, and 98.5 h of central processing unit
time, respectively.

n Va
1 0.830860925 029559 lea
2 0.802 380574 875 330 7€%a?
3 —0.3333333333333333e34°
4 —1.100 582 835 782 239¢%a®
5 1.181 891464 634 797€°a°
6 6.497 529551395 417€%a1°
7 —10.624 503950713 97€¢a®®
8 —81.757 589941742 91€%a
9 178.513511 520879 7€°al’

10 1766.139217 438 574€'0a"8

11 —4821.140 637900 176€'!q?!

12 —58297.858421 057 72€?a?

13 190970.838 808 033 5¢'34%°

14 2729105.834435479¢€4a2

15 —10429959.094 478 07€'%a?

16 —171982325.377 497 9€16a3°

17 751169779.772133 26" a*

18 14037 733b51.973 69¢'8434

19 —68976921338.065 720’

20 —1440679437693.430€20a%8

21 7865596742102.632¢2!a*!

22 181577035737305.2¢22a%

from the set of all vacuum graphs having 2/ fermion
lines and n —/ boson lines, where /=0,1,...,n A,
is computed by multiplying the lattice sum of each
graph (which we compute in coordinate space by sum-
ming over the positions of all vertices) with the ap-
propriate symmetry number and the values of the ver-
tices, summing over all graphs, and multiplying the
result by —1. It is nontrivial to compute the lattice
sum of nonplanar graphs which arise in large orders of
perturbation theory. Analytical techniques for evaluat-
ing such graphs are discussed elsewhere.®

Tables II, III, and IV summarize the results of our
lattice calculations. In Table I we give the values of
the first 22 vertices V,, correct to sixteen decimal
places, for the k=1 theory (¢°® supersymmetric
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Order Number of graphs

2

4

9

24

69

245
899
3792
17257
85990
461 357
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— —

theory). Table II gives the number of graphs that arise
in order n. In Table III we list the numerical values of
the coefficients 4, for n=1,2, ... ,11.

In any calculation of this type involving thousands
of graphs one must ensure that there are no calcula-
tional errors. There are several sources of calculation-
al error: (i) omission of graphs, (ii) duplication of
graphs, (iii) incorrectly computed symmetry numbers,
(iv) error in computing the lattice sum for a graph,
and (v) error in summing over graphs. We are abso-
lutely positive that there are no errors in our calcula-

TABLE III. A4,, the negative of the sum of the values of
the nth-order graphs for the k=1 theory. The value of
each graph is computed by multiplying together the vertices,
the symmetry number, and the lattice sum for that graph.
Observe that at first 4, decays in magnitude with increasing
n. However, after ninth order this pattern is reversed and
|4,| increases with .

X

Ap

0.056 025 349067
—0.053172481433
0.035863475674
—0.021275014 204
0.011 775536702
—0.006 113 652 899
0.002 848675013
—0.001017 881459
0.000058 214376
10 0.000 366 925659
11 —0.000476938 1
12 —0.000423 (estimated)
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tion because of the strategy we used to calculate 4,,.
We divided ourselves into four groups. Two groups
working completely independently calculated A4;,4,,
...,Ag by hand. These two groups then tediously
compared their graph-by-graph results for all 5044
graphs and these were then compared with the output
of a simple computer program run on MACSYMA
which generated the sum of the symmetry numbers in
each order. Meanwhile, the third and fourth groups
completely independently wrote and ran two computer
programs which enumerated all graphs at each order,
computed the symmetry numbers for each graph,
computed the lattice sum for each graph, and then ob-
tained A4, by summing over all graphs. Exact agree-
ment between the two computer calculations and the
two hand calculations was obtained for orders one
through eight. On the basis of this agreement, we be-
lieve that the computer programs have no flaws. We
then used both computer programs to generate Ao,
A0, and A1, and obtained complete agreement.

The ninth-order computer calculation makes it quite
clear that the strong-coupling graphs form a sharply
peaked distribution centered at zero (see Fig. 1).
Comparing the results with the distribution of
seventh-order graphs plotted in Fig. 2 of Ref. 1 shows
that the positive and negative tails of the distribution
become smoother and more monotonic as the order of
perturbation expansion increases. The ninth-order
computer calculation also reveals a change in the na-
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FIG. 1. The distribution of nonzero ninth-order graph
values contributing to 49 in the k=1 theory. There are a
total of 17257 graphs in ninth order of which 7570 are
nonzero. All but 18% of these graphs lie in a range —0.25 to
0.25; 690 graphs evaluate to less than —0.25; 690 graphs
evaluate to more than 0.25; and 6190 nonzero graphs lie in
the range [—0.25, 0.25]. A comparison with Fig. 2 of Ref. 1
(order-seven graphs) shows that the distribution becomes
smoother and more sharply peaked around the value zero as
nincreases.

ture of the strong-coupling lattice-expansion coeffi-
cients: Until eighth order, the magnitude of the coef-
ficients falls slowly and regularly. However, in ninth
order this pattern is abruptly changed. |A4q| is 17.5
times smaller than |Ag|. Actually, the signal that the
regular pattern is breaking first appears in eighth order.
We have plotted the values of (—1)"*14, for the
k=1 theory in Fig. 2 on a semilog graph. It is clear
from this graph that the actual value of Ag is lower by
about 10% than the value one would have predicted by
extrapolating from the first seven orders.

The values of (—1)"*14, are also given for the
k =2 theory in the same plot. Now observe that the
actual value of Ag4 is lower than the value one would
have predicted by extrapolating from the first five or-
ders also by about 10%. The 10% discrepancy in sixth
order is merely the first indication of a major change in
the behavior pattern of the coefficients A4,. For the
first six orders A4, decreases in magnitude and alter-
nates in sign. However, 4, in the k=2 theory, has
the same sign as A, and therefore is not shown in Fig.
2.

In general, for an arbitrary k, the coefficients A4, of
the lattice strong-coupling expansion show the same
kind of abrupt deviation from a regular pattern at a
critical order of perturbation theory—the higher the
value of k, the earlier the change occurs. Before the
critical value n, the perturbation coefficients decrease
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FIG. 2. The lattice strong-coupling series coefficients as a
function of the order of perturbation theory n for both k=1
and k =2 theories. The dots represent the k =1 theory and
the circled dots represent the k =2 theory. On this semilog
plot it is clear that (—1)"*14, lie on smooth curves. The
k=1(k=2) theory first deviates from its projected value
indicated by a triangle in order eight (order six).
Ag(k=1)=0.00006 and A;(k=2) is negative, which
shows that for sufficiently large n the behavior of the pertur-
bation coefficients is undergoing a transition.
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TABLE IV. The first ten continuum extrapolants E{® for
the ground-state energy density for the k =1 theory. These
extrapolants were obtained from Eq. (4) by the extrapolation
scheme described in Ref. 1. The observations that E{” is
larger than E{® and that ES® is still larger seem to indicate
that the extrapolation scheme has failed. However, the su-
perb results for E{% and E§'® show that this is not the case.
The temporary deviation from monotonic behavior corre-
sponds to a transition in the large-order behavior of the
strong-coupling lattice coefficients A4,,.

n Eo(")/gz

1 17.677 266

2 178.488 60

3 279.91901

4 28.748 400

5 7.996 58717

6 3.7312821

7 3.9917883

8 4.243 49

9 2.167 24
10 1.946 49

in magnitude and alternate in sign. After the critical
value the perturbation coefficients again alternate in
sign, but are displaced by one order. Our best estimate
for A1, is 0.000 423, which follows this pattern.

We use the extrapolation method described in Ref. 1
to calculate the continuum limit of the series in Eq.
(4) representing E, for the k=1 theory. In Table IV
we give the values of the first ten extrapolants. Ob-
serve that while the first six extrapolants are well
behaved and appear to be approaching zero, the
seventh extrapolant (which is computed from 4,
through Ag) is sensitive to the 10% deviation of Ag
from its extrapolated value and is larger than E¢®.
The eighth extrapolant to the ground-state energy den-
sity is still larger. However, once the sequence of per-
turbation coefficients 4, completes its transition and
settles down to its new behavior, the extrapolants once
again continue to decrease and approach zero. The
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ninth and tenth extrapolants clearly exhibit this
behavior. It may be that the increasing size of |A4,|
yields a more slowly convergent sequence of extrapo-
lants. This surmise must be checked by calculating
Aq,.

Finally, we wish to point out a startling regularity in
the coefficients Ay first noticed in Ref. 1. From Table
III it is clear that, having calculated the coefficients A
for kK = N, it is hard to imagine a predictive method of
estimating Ay +; with high accuracy, especially in the
region in which the sign oscillation misses an order.
However, such a method does exist, accurate to within
a few percent (except for the very small 49, which is
off by 9%). For example, the predicted value of 4, is
—0.000480, while the actual value is —0.000477. The
method is to expand (3 z%4, 1) =¥ to order Z¥, and
adjust Ay, so that the coefficient of Z¥ vanishes.
We do not understand why this method works, but we
use it to give the estimated value for 4,.
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