
VOLUME 54, NUMBER 23 PHYSICAL REVIEW LETTERS 10 JUNE 1985

High-Order Strong-Coupling Calculation of the Ground-State Energy Density
in Supersymmetric Field Theory
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This paper is a continuation of an earlier study of the ground-state energy density Eo in two-
dimensional supersymmetric field theories. Lattice strong-coupling techniques are used to calculate
Eo to eleventh order, extending the previous calculation by four additional orders. Our results con-
tinue to suggest that supersymmetry invariance is restored in the continuum limit. Moreover, new
and unexpected large-order behavior in the lattice perturbation-expansion coefficients is revealed in
this high order of perturbation theory.
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It is known that2 3 supersymmetry is not broken
dynamically for this class of theories, and that there-
fore the ground-state energy density must vanish. Our
motivation for performing a direct calculation of Eo
was to see if lattice strong-coupling calculations are
useful for theories having a supersymmetry invariance:
Introducing a lattice scale a explicitly breaks supersym-
metry. 4 However, if in the continuum limit we find
that Eo= 0, then we have a signal that supersymmetry
is restored as a 0. On the basis of a seventh-order
calculation of Eo, we concluded in Ref. 1 that a lattice
regularization does not break supersymmetry per-
manently.

We have now extended the strong-coupling calcula-
tion of Eo to eleventh order. We report the results of
this calculation in this Letter. In brief, our findings
continue to indicate that supersymmetry is restored in
the continuum limit a 0.

It is known that the conventional 1attice extrapola-
tion methods used in this paper and in Ref. 1 fail in

In a previous Letter' we reported a strong-coupling
lattice calculation of the ground-state energy density
Eo for a class of two-dimensional supersymmetric
Wess-Zumino field theories whose Euclidean Lagrang-
ian is given by

LE = —(7(a@) + QY-
+ —,

' g~'(@)yy+ —,
' g'ls(y) )'.

Here, Q is a two-component Majorana field, @ is a real
scalar field, and

Eo = g2z2 g z"A„+t,
n=o

(4)

where z =(ag) 13. The coefficient A„ is computed

other quantum theories in sufficiently high order. 5

For example, for the anharmonic oscillator whose
Hamiltonian is given by

0=p'/2+ gx'~ (3)

optimal accuracy in the strong-coupling expansion is
achieved in order five for N = 2; starting with order
six, the accuracy gradually decreases with increasing
order of perturbation theory. Thus, the lattice extrap-
olants appear to behave like the partial sums of a
divergent asymptotic series; they approach the exact
solution for a while and then veer away. Furthermore,
the order of perturbation theory in which optimal ac-
curacy is achieved gradually decreases as N increases.
For the supersymmetric theory of Eq. (1) with k =1,
the accuracy appears to worsen after order seven. The
order-eight result for Eo is slightly less accurate (it ap-
pears to diverge away from 0) and in order nine the ac-
curacy decreases slightly further. However, a surpris-
ing turnabout occurs in still higher orders of perturba-
tion theory. The order-ten value represents a dramatic
improvement in accuracy and in order eleven there is a
further improvement. It is possible that this faltering
in orders eight and nine is a temporary effect and that
this series converges. At least it has not yet passed its
optimum at eleventh order.

The procedure for calculating Eo is completely
described in Ref. 1. The strong-coupling lattice expan-
sion for Eo has the form
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TABLE I. Numerical values of the first 22 strong-
coupling vertices for the k= 1($6) supersymmetric theory.
These vertices are accurate to sixteen decimal places. This
accuracy is required to calculate A„dependably for large n
because there is extensive cancellation between positive and
negative graphs.

TABLE II. Number of distinct, connected vacuum graphs
in each of the first eleven orders of strong-coupling pertur-
bation theory. In the ninth, tenth, and eleventh orders the
graphs were enumerated with a computer. On a Ridge com-
puter (whose speed is comparable with VAX 11/780) the
calculations in orders eight, nine, ten, and eleven take 14
min, 1.3 h, 10.5 h, and 98.5 h of central processing unit
time, respectively.

10

0.830 860 925 029 559 1&a

0.8023805748753307~ a
—0.333 333 333 333 333 3~ a'
—1.100 582 835 782 239e4a'

1.181 891 464 634 797esa9

6.497 529 551 395 417K a'
—10.624503 95071397m a'
—81.757 589 941 742 91m a'

178.513 511 520 879 7E' a'

1766 139217438574~&Dais

Order

1

2
3
4
5
6
7
8
9

10
11

Number of graphs

2
4
9

24
69

245
899

3792
17 257
85 990

461 357

12

13

14

15

17

19

20

21

—4821.140637 900 176m" a '

—58 297.858 421 057 72m' a

190970.838 808 033 Se' a

2 729 105.834 435 479m'4a26

—10429 959.094 478 07~"a
—171 982 325.377 497 96' a

751 169779.'7'72 1332~"a

14037 733 051 973 69eis

—68 976 921 338.065 726' a
—1 440 679 437 693.430m a

7 865 596 742 102.632e2'a4'

181 577 035 737 305.26 a

theory). Table II gives the number of graphs that arise
in order n. In Table III we list the numerical values of
the coefficients A„ for n = 1, 2, . . . , 11.

In any calculation of this type involving thousands
of graphs one must ensure that there are no calcula-
tional errors. There are several sources of calculation-
al error: (i) omission of graphs, (ii) duplication of
graphs, (iii) incorrectly computed symmetry numbers,
(iv) error in computing the lattice sum for a graph,
and (v) error in summing over graphs. We are abso-
lutely positive that there are no errors in our calcula-

TABLE III. 3„, the negative of the sum of the values of
the nth-order graphs for the k=1 theory. The value of
each graph is computed by multiplying together the vertices,
the symmetry number, and the lattice sum for that graph.
Observe that at first A„decays in magnitude with increasing
n. However, after ninth order this pattern is reversed and
~A„~ increases with n

from the set of all vacuum graphs having 2l fermion
lines and n —I boson lines, where l =0, 1, . . . , n.
is computed by multiplying the lattice sum of each
graph (which we compute in coordinate space by sum-
ming over the positions of all vertices) with the ap-
propriate symmetry number and the values of the ver-
tices, summing over all graphs, and multiplying the
result by —1. It is nontrivial to compute the lattice
sum of nonplanar graphs which arise in large orders of
perturbation theory. Analytical techniques for evaluat-
ing such graphs are discussed elsewhere. 6

Tables II, III, and IV summarize the results of our
lattice calculations. In Table I we give the values of
the first 22 vertices V„, correct to sixteen decimal
places, for the k = 1 theory (@6 supersymmetric

1

2
3
4
5
6
7
8
9

10
11
12

0.056 025 349 067
—0.053 172 481 433

0.035 863 475 674
—0.021 275 014 204

0.011 775 536 702
—0.006 113652 899

0.002 848 675 013
—0.001 017 881 459

0.000 058 214 376
0.000 366 925 659

—0.000 476 938 1
—0.000 423 (estimated)
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tion because of the strategy we used to calculate A„.
We divided ourselves into four groups. Two groups
working completely independently calculated A t,A z,
. . . ,As by hand. These two groups then tediously
compared their graph-by-graph results for all 5044
graphs and these were then compared with the output
of a simple computer program run on MACSYMA
which generated the sum of the symmetry numbers in
each order. Meanwhile, the third and fourth groups
completely independently wrote and ran two computer
programs which enumerated all graphs at each order,
computed the symmetry numbers for each graph,
c'omputed the lattice sum for each graph, and then ob-
tained A„by summing over all graphs. Exact agree-
ment between the two computer calculations and the
two hand calculations was obtained for orders one
through eight. On the basis of this agreement, we be-
lieve that the computer programs have no flaws. We
then used both computer programs to generate A 9,
A to, and 3 tt, and obtained complete agreement.

The ninth-order computer calculation makes it quite
clear that the strong-coupling graphs form a sharply
peaked distribution centered at zero (see Fig. 1).
Comparing the results with the distribution of
seventh-order graphs plotted in Fig. 2 of Ref. 1 shows
that the positive and negative tails of the distribution
become smoother and more monotonic as the order of
perturbation expansion increases. The ninth-order
computer calculation also reveals a change in the na-

I 500

ture of the strong-coupling lattice-expansion coeffi-
cients: Until eighth order, the magnitude of the coef-
ficients falls slowly and regularly. However, in ninth
order this pattern is abruptly changed. ~A9~ is 17.5
times smaller than ~As~. Actually, the signal that the
regular pattern is breaking first appears in eighth order.
We have plotted the values of ( —1)"+tA„ for the
k =1 theory in Fig. 2 on a semilog graph. It is clear
from this graph that the actual value of As is lower by
about 10'/0 than the value one would have predicted by
extrapolating from the first seven orders.

The values of ( —1)"+tA„are also given for the
k=2 theory in the same plot. Now observe that the
actual value of A6 is lower than the value one would
have predicted by extrapolating from the first five or-
ders also by about 10/0. The 10'/0 discrepancy in sixth
order is merely the first indication of a major change in
the behavior pattern of the coefficients A„. For the
first six orders A„decreases in magnitude and alter-
nates in sign. However, A7, in the k = 2 theory, has
the same sign as A6, and therefore is not shown in Fig.
2.

In general, for an arbitrary k, the coefficients A„of
the lattice strong-coupling expansion show the same
kind of abrupt deviation from a regular pattern at a
critical order of perturbation theory —the higher the
value of k, the earlier the change occurs. Before the
critical value n, the perturbation coefficients decrease
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FIG. 1. The distribution of nonzero ninth-order graph
values contributing to A9 in the k=1 theory. There are a
total of 17257 graphs in ninth order of which 7570 are
nonzero. All but 18% of these graphs lie in a range —0.25 to
0.25; 690 graphs evaluate to less than —0.25; 690 graphs
evaluate to more than 0.25; and 6190 nonzero graphs lie in
the range [—0.25, 0.25]. A comparison with Fig. 2 of Ref. 1

(order-seven graphs) shows that the distribution becomes
smoother and more sharply peaked around the value zero as
n increases.

FIG. 2. The lattice strong-coupling series coefficients as a
function of the order of perturbation theory n for both k = 1

and k = 2 theories. The dots represent the k = 1 theory and
the circled dots represent the k = 2 theory. On this semilog
plot it is clear that ( —1)"+'A„ lie on smooth curves. The
k =1(k =2) theory first deviates from its projected value
indicated by a triangle in order eight (order six).
A9(k = 1 ) = 0.000 06 and A7(k = 2) is negative, which
shows that for sufficiently large n the behavior of the pertur-
bation coefficients is undergoing a transition.
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E(n) /g2

1

2
3
4
S
6

8
9

10

17.677 266
178.488 60
279.91901

28.748 400
7.996 587 7
3.731 282 1

3.991 788 3
4.243 49
2.167 24
1.946 49

in magnitude and alternate in sign. After the critical
value the perturbation coefficients again alternate in
sign, but are displaced by one order. Our best estimate
for 2 tq is 0.000423, which follows this pattern.

We use the extrapolation method described in Ref. 1

to calculate the continuum limit of the series in Eq.
(4) representing Eo for the k = 1 theory. In Table IV
we give the values of the first ten extrapolants. Ob-
serve that while the first six extrapolants are well
behaved and appear to be approaching zero, the
seventh extrapolant (which is computed from A t
through As) is sensitive to the 10'/0 deviation of As
from its extrapolated value and is larger than Eo(

The eighth extrapolant to the ground-state energy den-
sity is still larger. However, once the sequence of per-
turbation coefficients A„completes its transition and
settles down to its new behavior, the extrapolants once
again continue to decrease and approach zero. The

TABLE IV. The first ten continuum extrapolants Eo~"~ for
the ground-state energy density for the k =1 theory. These
extrapolants were obtained from Eq. (4) by the extrapolation
scheme described in Ref. 1. The observations that Eo is
larger than Eo and that ED~8~ is still larger seem to indicate
that the extrapolation scheme has failed. However, the su-
perb results for E09 and Eo'0 show that this is not the case.
The temporary deviation from monotonic behavior corre-
sponds to a transition in the large-order behavior of the
strong-coupling lattice coefficients 3„.

ninth and tenth extrapolants clearly exhibit this
behavior. It may be that the increasing size of ~A„~
yields a more slowly convergent sequence of extrapo-
lants. This surmise must be checked by calculating

Finally, we wish to point out a startling regularity in
the coefficients A& first noticed in Ref. 1. From Table
III it is clear that, having calculated the coefficients Al,
for k ~ % it is hard to imagine a predictive method of
estimating 3~+ t with high accuracy, especially in the
region in which the sign oscillation misses an order.
However, such a method does exist, accurate to within
a few percent (except for the very small A9, which is
off by 9%). For example, the predicted value of A t t is
—0.000480, while the actual value is —0.000477. The
method is to expand (g z"Al, + t) 4 + to order Z+, and
adjust A~+t so that the coefficient of Z~ vanishes.
We do not understand why this method works, but we
use it to give the estimated value for At~.
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