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Noise without Noise: A New Monte Carlo Method
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A new Monte Carlo method is introduced which generates configurations according to any
desired probability distribution. Unlike previous techniques, which require the relative probability
of any two configurations to be computed exactly, this method allows the prescence of large but un-

biased noise in this computation. The method has important applications in including the effects of
dynamical fermions in Monte Carlo calculations, amongst other problems.

PACS numbers: 02.70.+d, 02.50. +s, 11.15.Ha

In recent years Monte Carlo methods have been
used with considerable success in the study of the
properties of quantum field theories outside the
domain of applicability of weak- or strong-coupling
perturbative methods. Important results have been
obtained recently in condensed-matter physics by the
application of similar techniques.

One of the most outstanding problems in these stud-
ies has been the inclusion of the dynamical effects of
fermion fields. A standard procedure is to derive an
effective bosonic action by integrating out the fer-
mions in the field-theoretic or condensed-matter
model under investigation. The resultant effective bo-
sonic action is highly nonlocal, since it contains the
determinant of the fermion matrix associated with the
model as a factor.

The major difficulty with this subject is the vast
amount of computation required to perform any reli-
able numerical calculations: This is because the com-
putation of the relative measure p, l&„,„]/p, t&,)d]
which is required to effect a step of the Markov pro-
cess which generates bosonic configurations with the
correct distribution becomes prohibitively costly when
the action involved becomes highly nonlocal.

The symptom of this problem is that the stochastic
part of the Monte Carlo computation (e.g. , the genera-
tion of random numbers) becomes a negligible part of
the computational cost as compared to the explicit
evaluation of the relative measures. The purpose of
this paper is to show that this time-consuming exact
computation is unnecessary, and that a noisy (but un-
biased) estimate of the relative measures gives com-
pletely equivalent results.

Our results show that by use of an acceptance algo-
rithm different from the usual Metropolis one the ef-
fect of noise does not serve to disorder the system be-
ing studied, as one might at first expect. Instead, a
noisy system provides an identical Markov process to
one without noise, and hence the configurations sam-
pled are distributed according to the correct measure,

P( V U)P(U) =P(U V)P( V), (2)

where P( V U) is the probability of generating con-
figuration Vfrom configuration U.

We may write this transition probability as the prod-
uct of an a priori probability of selecting V, P, ( V), and
a probability P, ( V U) of accepting the update. We
can choose P, ( V) to be the distribution for link Vig-
noring the fermion determinant, using a heat-bath al-
gorithm:

P, ( V)(dV)~ e e (dV), (3)
and the effects of the dynamical ferrnions are incor-
porated by the acceptance probability P, ( V U).

and the measured values (and variances) of all physi-
cal quantities will be unchanged.

The method may also be useful for "improved" bo-
sonic actions in quantum field theories, because such
actions are significantly more nonlocal than naive ac-
tions.

In the following we shall introduce our new algo-
rithm for generating a valid Markov process in the
presence of noise. For simplicity of exposition we
shall discuss explicitly the case of dynamical fermions
in quantum chromodynamics, but the general applica-
bility of the method is obvious.

Markov process. The basic req—uirement of a Monte
Carlo updating algorithm in lattice QCD is that it gen-
erates boson configurations according to the probabili-
ty distribution

P( U) (dU) = Z ' detM( U)e (dU), (1)

where Z is chosen such that f (dU)P( U) =1, (dU) is
the SU(3) Haar measure, Stt is the bosonic action, and
detM is the fermion determinant. It is well known that
if we construct a Markov process which is ergodic and
which has P as a fixed point, then the distribution of
configurations it generates will converge to P. A suffi-
cient (although not necessary) condition for P to be a
fixed point is that detailed balance is satisfied:
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Introduction of noise. —We now turn to the question
of how to implement the acceptance step. The basic
premise of our method is that all we know about the
fermion determinant ratio is an unbiased estimator

U(x) = detM( V)
(4)

detM U

with x a random variable whose distribution p(x) is ar-
bitrary except that it is normalized and of mean unity:

(5 ~ U(x) )„—J dx p (x)x detM( V)

detM( V)

detM( U)
If we require that the acceptance probability also be
unbiased we must make P, linear in this estimator,

A. ++A. (& ( ))„ f U& V,
P, (V U=

+A. +(4t tt(x))„ if U ~ V,

(6)

with A.
+-being constants, that is they do not in any way

depend upon the random variable X. Two points about
Eq. (6) deserve further explanation. First, the condi-
tion U & V refers to any pairwise ordering of the con-
figurations Uand V; a suitable ordering could be that
U & V if U is the state with larger bosonic measure,—pS&(U) —pSB( V)
i.e., e &e, but this is totally ad hoc.
Second, we should explain why the average (. . .) „ap-
pears in the equation: In any particular step in a prac-
tical calculation the random variable x will take on
some particular value, and the probability of accepting
the new configuration V will depend on this value.
However, the probability which occurs in the detailed
balance equation is not this one, but its convolution
with the probability that x takes such a value, as we
have used in Eq. (6).

It is now easy to verify that detailed balance is
indeed satisfied; from Eqs. (2) —(6) we find that (for
the case U & V)

P, ( V U)P, ( V)P(U) —P, (U V)P, (U)P( V)

~ (A. (5 t tt(x)) „+X+)e ' detM(U) e

—(~+(a ( )) +~-) '' detM(V)e ''

P V g
detM( V)

1 g I detM( V)

detM( U) detM( U)

which cannot be constructed in an unbiased way from
~ v- U(x)

Choice ofparameters. It only rema—ins to choose the
parameter values A.

-+ in Eq. (6). These must be
chosen such that P, always lies in the interval [0,1], as
otherwise P, would not be a probability. This is im-
possible in general for arbitrary p (x), but if we assume
that 0 & AU z(x) & 2 then A. = —,', A.

+ =0 seems to
be a favored choice, because the determinant ratio es-
timator b, then has to be computed for only about half
of the steps. This compensates for the fact that the in-
trinsic acceptance rate is about half of that of the
Metropolis algorithm. There are, of course, many oth-
er choices for A. +-, e.g. , ones which permit 6 to fluctu-
ate over a wider range at the cost of a lower acceptance
rate (the acceptance rate falls linearly with the allowed
range of 5 values, as compared with the 1/Jn variance
for the stochastic computation of b, ).

In practice, of course, the actual range of the distri-
bution is not going to be bounded however small we
make the variance, but the number of times that the
condition 0 & b, & 2 is violated can be adjusted to be
very small, and furthermore it is trivial to count the
number of times such violations occur. It should be
relatively easy to keep the systematic errors induced by
these bound violations under control.

The simplest illustration of our Monte Carlo algo-
rithm is to a system with a finite number of states.
For the sake of definiteness we consider a system with
five states, which we assign "energies" E; = i/10
(i =0, . . . , 4), and by fiat we choose the probability
of the states to be P;—= e '/QJ=oe . We shall gen-

—E,. 4
—EJ

crate a sequence of states with this distribution using a
Markov process of the type described above.

For a given step we choose the candidate new state
uniformly at random from the five possibilities, that
is, in the language used before, P, (i) = —,

' (Vi). The
quantity which we called 5 before will in this case be
taken to be b, ; k(x) —= P;/Pk+ x, where x is a random
variable with mean zero. One may notice that we use
additive noise here, whereas we used multiplicative
noise in the theoretical argument: The conclusion,
however, remains the same.

If we choose the arbitrary ordering of the states re-
quired in Eq. (6) to be that state i is less than state k if
I & k, then we have

(~i k(x) ) P/2Pk'
P, (i —k) =

if k ~i.

detM( V) + A,
+ detM( U) —X+ detM( U) —A. detM( V) = 0.

It is worthwhile to compare this case with the Metropolis algorithm, for which

detM( V)

detM(U) '
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This procedure leads to the following Markov transition matrix:
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(10)

provided only that the noise lies between the allowed
bounds, in this case Ixl & 2 P&P4—=0.508. Itera-
tion of the Markov process governed by Eq. (10) will
produce the five states with relative frequencies ap-
proaching the desired probabilities.

In Fig. 1 we show the average energy measured us-
ing this Markov process. We choose the distribution
for the noise to be x= +o-, where the two signs are
chosen equiprobably, and the parameter a- determines
the magnitude of the noise. This distribution gives
maximal noise within the specified bounds. It is easily
seen that (E) is correctly determined when
rr & 0.508, and for larger noise the system approaches
the limit in which the noise dominates the transition
probabilities and the states are visited with equal fre-
quency. Also shown in the figure are the correspond-
ing measurements made by use of the Metropolis algo-
rithm; these deviate from the correct result even for
small values of a. .

It is most important to realize that it is not only the

mean and its variance which are unchanged by the ad-
dition of noise with use of our method; all averages
measured over the Markov chain will be correct. This
is clearly illustrated in Fig. 2, in which we show the
measured relative frequencies of the five states from
the same simulation as gave Fig. l.

We have established that a noisy estimate for 5
leads to just as good a sequence of bosonic configura-
tions as an exact evaluation, provided only that the es-
timate is unbiased and that the value of 5 lies in a
bounded range (say, 0& 5 & 2). We shall now give
several examples of how such noisy estimates may be
computed efficiently in terms of the inverse of the fer-
mion matrix.

It has been observed' that a local change U U
+SU in the bosonic field leads to a fermion deter-
minant ratio

= det[1+ M '( U)AM( U) ],det[M(U) ]
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FIG. 1. The average energy of the five-state system as a
function of noise in the updating process. The exact value is
indicated by the line. The method (linear algorithm) shows
bias only for violations of the bounds.
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FIG. 2. The relative frequencies of the five states as a
function of the noise. The lines correspond to the exact
results.
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where the nontrivial change 5M in the fermion matrix
is restricted to the neighborhood of the updated lattice
site or link for models which have local boson-fermion
couplings. Our Monte Carlo algorithm is immediately
applicable to fermion methods which attempt to calcu-
late the matrix elements of the inverse fermion matrix
in a stochastic fashion.

von Neumann Ula—m random walks. Th—is technique
which was described earlier2 immediately satisfies the
condition of generating an unbiased estimator. One
calculates the inverse matrix element M„' from a
properly chosen scoring procedure for random walks
from site i to site jon the lattice.

According to the law of large numbers the sum of
the scores for the random walks has a Gaussian proba-
bility distribution around the mean MJ with a width
given by a./JW, where o.2 is the variance of the ran-
dom walks and N is the number of walks in the pro-
cedure. By taking sufficiently many walks we can
reduce the variance of the distribution p(x) as much
as we desire.

We tested our new Monte Carlo algorithm on a
simple boson-fermion model, calculating the inverse
matrix elements of the fermion matrix from von
Neumann —Ulam random walks. The fermion matrix
M was defined as

MJ
= —5;J + ( m + g U; )5;J, (12)

where U, is a scalar boson field coupled to a spinless
fermion field. b, ;J is the lattice Laplacian operator, m
is the fermion mass, and g designates the boson-
fermion coupling constant (this model calculation was
discussed earlier2 in the framework of the Metropolis
procedure, whose results exhibit a systematic bias for
noisy random walks).

The fermion-boson interaction dynamically gen-
erates a mass term, and the renormalized fermion
mass is given by mz = m + —,

'
g. We computed the re-

normalized fermion propagator to test our method.
For the updating step we decreased the number of ran-
dom walks and monitored various physical quantities,
like the fermion propagator: The picture that emerged
is similar to Fig. 1. With increasing noise from the
random walks the variance of the measured physical
quantities remained identical to that of the exact up-
dating procedure. As the noise further increased the
Metropolis method quickly became biased while the
new algorithm remained unbiased much longer until
the bound violations became significant.

Pruning This metho. d—which we tested on the
Schwinger model3 introduces some small bias into the
calculation of the fermion determinant ratio because it
is a stochastic iteration of the Jacobi method for in-
verting large sparse matrices, and it can therefore only
be carried out for some fixed number of Jacobi itera-
tion steps. This bias can be made negligibly small,

provided that the fermions are sufficiently heavy. On
the other hand, this method deals with sign cancella-
tions more effectively than the von Neumann —Ulam
method, and thus is expected to give a smaller vari-
ance.

Pseudofermions. —This technique" does not directly
lend itself to our approach. As it is normally used, the
fermion Green's functions (Q(x)Q(y)) are computed
once per sweep, and then used to update all the links
in the lattice successively. Even though the changes in
the link variables are constrained to be small (thereby
increasing the correlations between sweeps as a side
effect), this introduces a bias into the values of b,

used. An alternative would be to perform a brief pseu-
dofermion Monte Carlo calculation for each bosonic
link update, as there is no need to reduce the variance
in the measurement of (P (x)P (y) ) by a large
amount. Unfortunately, although one only needs to
sample few equilibrium pseudofermion configurations,
it is still necessary to perform enough pseudofermion
sweeps for that Markov process to converge to the
correct distribution, and it is unclear how long this
convergence time is. Variants of the pseudofermion
technique which utilize the new algorithm are under
study.

In conclusion, we have developed a new Monte Car-
lo algorithm which has great potential for fermionic
applications in lattice gauge theories and condensed-
matter physics. We have presented the theoretical jus-
tification and illustrated the method on some simple
examples. However promising the algorithm is, its ul-
timate success will depend on the efficient calculation
of an unbiased stochastic estimate of the fermion
determinant ratio.

We should also stress that the method has a general
applicability beyond the obvious fermion problems
which we have discussed here.
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