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Defense of the Standard Quantum Limit for Free-Mass Position
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Measurements of the position x of a free mass I are thought to be governed by the standard
quantum limit (SQL): In two successive measurements of x spaced a time r apart, the result of the
second measurement cannot be predicted with uncertainty smaller than (tr/m)'t2. Yuen has sug-
gested that there might be ways to beat the SQL. Here I give an improved formulation of the SQL,
and I argue for, but do not prove, its validity.

PACS numbers: 03.65.Bz, 06.20.Dk

Conventional wisdom'2 holds that in two successive measurements of the position x of a free mass m, the result
of the second measurement cannot be predicted with uncertainty smaller than (hr/m)' 2, where r is the time
between measurements. This limit is called the standard quantum limit (SQL) for monitoring the position of a free
mass.

The standard "textbook" argument for the SQL runs as follows. Suppose that the first measurement of x at
t = 0 leaves the free mass with position uncertainty Ax(0). This first measurement disturbs the momentum p and
leaves a momentum uncertainty hp(0) ~It/2bx(0). By the time r of the second measurement the variance of x
(squared uncertainty) increases to

(Ax) (r) = (hx) (0) + [(Ap) (0)/m ]r ~ 2bx(0)bp(0)r/m ~tr/m.

The standard argument views the SQL as a straightforward consequence of the position-momentum uncertainty
principle Ax(0)hp(0) ~ , It. —

Yuen3 has pointed out a serious flaw in the standard argument. Between the two measurements the free mass
undergoes unitary evolution. In the Heisenberg picture the position operator x evolves as

x(t) = x(0) +p(0) t/m.

Thus the variance of x at time r is given not by Eq. (1), but by

(b,p) (0) 2 (x(0)p(0)+p(0)x(0)) —2(x(0)) (P(0))
m m

(2)

(3)

The standard argument assumes implicitly that the last term in Eq. (3) is zero or positive. Yuen's point is that
some measurements of x leave the free mass in a state for which this term is negative. He calls such states contrac-
tive states because the variance of x decreases with time, at least for a while. As a result, the uncertainty Ax(r)
can be smaller than the SQL. Yuen3 4 concludes that there are measurements of x that beat the SQL. My con-
clusion is different: The flaw lies in the standard argument, not in the SQL. In this Letter I give a new, heuristic
argument for the SQL, formulate an improved statement of the SQL, and analyze a measurement model that sup-
ports the heuristic argument.
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The heuristic argument is based on including the ef-
fect of the imperfect resolution o. of one's measuring
apparatus. If the free mass is in a position eigenstate
at the time of a measurement of x, then cr is defined
to be the uncertainty in the result; thus, roughly
speaking, the measuring apparatus can resolve posi-
tions that are more than o. apart. I assume that the
measuring apparatus is coupled linearly to x, so that in
general the variance of a measurement of x is the sum
of o.2 and the variance of x at the time of the measure-
ment. Consider now two measurements of xat times
t = 0 and t = r, made with identical measuring appara-
tuses. In the absence of a priori knowledge, the result
of the first measurement is completely unpredictable.

Nonetheless, the first measurement does yield a value
for x. Since this value does not tell one the position
before the measurement, it is hard to see what one
could mean by a "measurement of x with resolutiona" unless one means that the measurement deter-
mines the position immediately after the measurement
to be within roughly a distance o. of the measured
value. s Therefore, I assume that just after the first
measurement, the free mass has position uncertainty
hx(0) ~ o;this-assumption implies that an immediate
repetition of the same measurement would yield the
same result within approximately the resolution o..
The variance of the second measurement (t=a) is
given by

b, ,'=a'+ (Ax)'(r) ~ (Ax)2(0)+ (Ax)2(v) 2bx(0)bx( ) ~tr/m (4)

According to this argument, the SQL is a consequence
of the uncertainty principle

bx(0)hx(r) ~ —,
' i([x(0),x(~)]) i =br/2m, (5)

provided that o ~ (bx) (0). Contractive states do
not vitiate this argument; even if the free-mass state
after the first measurement is a contractive state such
that b, x(7 ) & (h ~/m), the SQL is valid.

Yuen uses a measurement model developed by Gor-
don and Louisell, 6 which includes the measuring-
apparatus resolution. How then can he contend that it
is possible to violate the SQL? The answer lies in the
assumption o~hx(0), -which links the uncertainty b, 2

in the second measurement to the position uncertainty
b, x(0) just after the first measurement. An easy way
to circumvent this link, pointed out by Yuen, 4 is to
use measuring apparatuses which are not identical.
The first measurement, performed with an apparatus
of poor resolution o.t ~ Ax(0) && (tr/2m)', is
designed to leave the free mass in a contractive state
such that b, x(r) « (h~/2m)'l2; the second measure-
ment, performed with an apparatus of good resolution
o2 « (hr/2m)' 2, has uncertainty A2= [o22+ (hx)2
x (r)]' « (hr/m)', which violates the SQL. Two
such measurements should be regarded as a single
measurement process, because in a sequence of mea-
surements one would repeat the entire process, not the
individual measurements separately. The first rnea-
surement is a preparation procedure for the second; it
puts the free mass in a state that becomes a near
eigenstate of position at the time of the second mea-
surement. It is obvious that a measurement of x can
have arbitrarily small uncertainty if one is allowed an
arbitrary prior preparation procedure. Although the
possibility of two such measurements may be impor-
tant, more important is to sharpen the formulation of
the SQL—to rule out this case to which the SQL clear-
ly cannot apply.

With the preceding discussion in mind, I formulate

the SQL as follows: Let a free mass m undergo unitary
evolution during the time ~ between two measurements of'
its position x, made ~ith identical measuring apparatuses;
the result of the second measurement cannot be predicted
with uncertainty smaller than (h r/m)'t . For this formu-
lation to be true in general, the uncertainty in the
second measurement must be understood to be an
average uncertainty, averaged over the possible results
of the first measurement; the averaging procedure is
made explicit in the model considered below [see dis-
cussion preceding Eq. (14)]. This improved formula-
tion of the SQL is still an important restriction, be-
cause it applies to a class of real experiments. 2 In
these experiments one has available a particular tech-
nique for measuring x, which is used to make a se-
quence of measurements on a single free mass. The
objective is to detect some external agent (e.g. , a
force) that disturbs x. The relevant question is how
small a disturbance can be detected or, equivalently,
how well one can predict the result of each measure-
ment in the absence of the disturbance. The improved
SQL addresses precisely this question. Notice that the
improved SQL explicitly disallows any tinkering with
the free mass during the interval between measure-
ments; the free mass must evolve unitarily with no
state preparation and no modification of its Hamilton-
ian.

Yuen would not agree even with the improved
version of the SQL, because he believes that there
are measurements that violate the assumption
o~b, x(0).3 4 Sp-ecifically, he suggests that there are
ways to measure x which have good resolution
o- « (fr/2m)' 2, but which leave the free mass in a
contractive state with Ax(0) » (tr/2m)'t » o-

such that Ax(r) « (tr/2m)' . Although contrac-
tive states are essential to this scheme, they are not
enough to invalidate the SQL; also required are mea-
surements of resolution o. that do not determine the
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position just after the measurement to be within o- of
the measured value. Yuen states his suggestion in the
notation of the Gordon-Louisell formalism, which
can describe formally measurements with b,x(0) )o. -

The existence of this formal description, however,
does not guarantee that such measurements can be
realized. Gordon and Louisell simply assume the ex-
istence of certain measurements [Eqs. (22) and (23)
of Ref. 6] without demonstrating that all such mea-
surements can be realized. The measurements sug-
gested by Yuen are among those for which no realiza-
tion is known. 3 4

I turn now to a simple model of measurements of x.
Within the model one can demonstrate the validity of
the SQL, but the model by no means provides a gen-
eral proof. The model is, however, sufficiently general
that it clarifies the meaning of the SQL and indicates
where one might seek violations. I work in the
Schrodinger picture; operators are denoted by caret.

The first task is to model the initial measurement of
x; the model that I employ is like that of Arthurs and
Kelly. 7 The free mass is coupled to a "meter, " a one-
dimensional system with coordinate Q and momentum
P, which can be regarded as the first stage of a macro-
scopic measuring apparatus. The coupling is turned on
from t= —r to t =0 (~ && r), it is described by an
interaction Hamiltonian KxP (K is a coupling con-
stant), and it is treated in the impulse approximation
{the coupling is so strong that the free Hamiltonians of
the free mass and the meter can be neglected). The
coupling correlates g with x. When the interaction is

turned off at t = 0, one "reads out" a value for g,
from which one infers a value for x. The readout of g
can be viewed as an ideal measurement of g made by
the subsequent stages of the measuring apparatus.

At t = —~, just before the coupling is turned on, the
free-mass wave function is P(x), and the meter is
prepared in a state with wave function 4&(g). The to-
tal wave function is Wp(x, g) = P(x)4( g); expectation
values and variances with respect to Irp(x, g) are dis-
tinguished by a subscript 0. For simplicity I assume
that ( g ) p

= (P) p
= 0. At the end of the interaction

time (t = 0) the total wave function becomes

0'(x, g) =y(x)e(g —x) (6)

(units such that Kr =1); expectation values and vari-
ances with respect to W(x, g) are distinguished by hav-
ing no subscript. The expectation value of Q at t=0
is (g) = (x)p. Thus the result of the first measure-
ment —the inferred value of x—is the value g ob-
tained in the readout of Q. The expected result is

(g) = (x) p, and the variance of the measurement is
the variance of Q at t = 0:

5', = (Ag)'= 0-'+ (dkx)'. (7)

Here o is the resolution of the meter, defined by
o =—(&Q)p= fdg Q IC'(Q) I . Notice that the vari-
ance (7) has the form assumed in Eq. (4)—a conse-
quence of using an interaction Hamiltonian KxP that is
linear in x;

The free-mass wave function $(x l g) just after the
first measurement (t = 0) is obtained (up to normali-
zation) by evaluating 'Ir(x, g) at Q = g:

q (x I g) =+(x,g)/[P(g) ]'i'= P(x)@(g—x)/[P(g) ]'i', (8)

P(g) —= J dxlW(x Q) l

= ' dxlQ(x) l l@(g—x) l . (9)

Notice that P(g) is the probability distribution to obtain the value Q as the result of the first measurement. Ex-
pectation values and variances with respect to Q(x l g) are distinguished by a subscript Q.

During the time ~ until the second measurement the free mass evolves unitarily. The second measurement is
described and analyzed in exactly the same way as the first (assumption of identical measuring apparatuses). The
expected result is the expectation value of x at time r, which can be written as

(x (~) ) g
——J dx y'(x l g) [x+ (h r/im ) (0/Bx) ]y (x l g), (10)

x (7 ) —= x+ pr/m.

(13)

The result g of the first measurement is known, and the meter wave function C (Q) is under one's control, but
the free-mass wave function P(x) before the first measurement is presumably not known. Nonetheless, I assume
knowledge of Q(x) so that (x(~)) y can be calculated exactly. Then the unpredictability of the second measure-
ment is characterized by its variance

b, 2
20= o-2+ [Ax(~) ]g~, (12)

[5x (~ ) ]g' =„I dx y'(x
l g ) [x + (h 7./im ) (rl/8x) —(x (r ) ) g ]'y (x l Q ) .

A simple case, corresponding to the argument leading to Eq. (4), occurs when one has almost no a priori know-
ledge about x before the first measurement —i.e. , when Q(x) = lQ(x) le'~t ~ is such that iQ(x) l varies slowly on
the scale set by o.. Then one finds that P(xlg) =4(g —x)e'~t"), which implies (x) &= g and (b, x)0 o-2;——
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the variance (12) of the second measurement becomes

S,'0= (Sx)~+ [ax(r)]~ ~ ~([xx(r)])~~
=h. r/m.

An arbitrary P(x) requires more care. It is possible to find Q(x) and 4(g) such that b, 20 (tr/m for some
values of Q. Since one cannot control the outcome of the first measurement, a reasonable way to characterize the
unpredictability of the second measurement is to average A2 0 over all values of Q, weighting each value by its pro-
bability P(Q):

b2= J dg P(Q)hz y=cr + ([x(r) —(x(r)) 0] ), (14)

([x(r) —(x(r)) 0] ) = J dx dg + (x,g) [x+ (fr/im) (r)/r)x) —(x(r)) 0] %"(x,g). (i5)

dg P(Q) (bx)g~= ((x —(x) &)2) =rr2 —((Q —(x) &) ) ~ a (i6)

((x —(x) g)') =„dx dg(x —(x) g)'i+(x, g) i'.

Equation (16) is the analog of the assumption o- ~ b, x(0) in the heuristic argument leading to Eq. (4). By noting
that

(17)

The notation (x(r) ) 0 emphasizes that (x(r) ) 0 is a function of the operator Q. The average variance of x just
after the first measurement satisfies

((x) -) = J dgP(Q)(x) g= (x) ((x(r)) -) = J dg P(Q) (x(r)) g= (x(7)),
one can write the inequality

522~ [b, (x —(x) 0) ]'+ [b, (x(r) —(x(r)) 0) ]'
—I&[ —

& )~, ( ) —
& ( )&~]&l = I([, ( )l&l=h / . (i8)

Thus the average variance obeys the SQL.
Both the heuristic argument and the model just con-

sidered require an essential assumption —that the
measuring apparatus is coupled linearly to x. Within
the context of a linear coupling, the model is quite
general, since it allows the meter to be prepared in any
state. Linear coupling does apply to the specific case
Yuen describes in Refs. 3 and 4, which involves
Gaussian free-mass contractive states that he calls
"twisted coherent states"; any nonlinear coupling to x
would destroy the Gaussian character of these states.
To seek violations of the SQL, one should consider
nonlinear couplings —e.g. , Kf(x)P. A word of cau-
tion: The interaction Kf(x)P describes directly mea-
surements of the quantity y = f(x); interpreting and
analyzing such measurements as measurements of x is
difficult.
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