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Upper Critical Field in p-Wave Superconductors with Broken Symmetry
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A uniaxially anisotropic p-wave interaction is shown to lead to either a polar or an axial state.
We calculate the anisotropy of H, 2( T) with the assumption that Ev» kaT, . Weak-interaction an-
isotropy leads to a kink in H, q q( T). Otherwise, our results are qualitatively similar to those for an
anisotropic s-wave material. Our results indicate that the anisotropy of the H, 2( T) data obtained
for UPt3 cannot be explained as intrinsic for a p-wave superconductor unless E~ ——k8 T,.
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Recently, there has been a great deal of interest in
several materials known as "heavy fermion" super-
conductors. Various workers have interpreted the
specific heat, ultrasonic attenuation, and I/T& data as
evidence for p - wave, or triplet superconducting pair-
ing. ' More precisely, some data appear to be gen-
erally consistent with a polarlike state, in which the or-
der parameter vanishes along a line on the Fermi sur-
face. Other data appear to be more suggestive of an
axial-like state [of which the Anderson-Brinkman-
Morel (ABM) state of 3He is the simplest example], in
which the order parameter vanishes at isolated points
on the Fermi surface. Some theoretical considera-
tions4 5 have supported a triplet spin state. More re-
cently, group-theoretical arguments led to claims that
the most general forms for the possible triplet states
do not permit a polar-type state. However, those
workers apparently overlooked the consequences of an
anisotropic pairing interaction. Any anisotropy forces
the simplest p-wave state to be entirely of the favored
symmetry: For a p-wave pairing interaction that
favors one direction over the other two, a polar state
has the highest T„and since its interaction with the
axial (ABM) state is repulsive, it is the only allowable
state for a sufficiently strong ( —2 or greater) interac-
tion anisotropy. Conversely, if the p-wave pairing in-
teraction is weakest in one direction, an axial or ABM
state is favored. Hence, the above experiment on
UPt3 is consistent with either singlet or triplet (p-
wave) superconductivity in a hexagonal crystal.

Recently, the observed anisotropy of the upper criti-
cal field H, 2 in UPt3 was found to vary from unity at
low temperatures to =—1.7 near T, . This behavior is
not expected for intrinsic s-wave superconductors, but
has been interpreted as intrinsic for p-wave materials. ~

In this Letter, we investigate this claim in detail, and
conclude that although the ultrasonic-attenuation
result could possibly arise from intrinsic p-wave pair-

ing with broken symmetry, the H, z data appear to be
difficult to interpret as intrinsic for any type of homo-
geneous superconductor, unless the Fermi energy EF
=—kBT, . We believe it is more likely due to experi-

mental difficulties.
Previously, we calculated H, z for clean p-wave

superconductors with an isotropic effective mass and
an interaction of the form Vk k', and found that the
polar state had the highest H, 2. No anisotropy of H, 2

is obtained for that interaction, because the order
parameter h(k) is free to rotate relative to H, and H, 2

is optimized when the nodal plane of A(k) is perpen-
dicular to H. Similarly the axes of the ABM state and
the generalized ABM state [given by Eq. (45) in the
first paper of Ref. 9, hereafter referred to as the SK
state] are always parallel to H. Consequently, H, 2(T)
for s- and p-wave superconductors with isotropic in-
teractions are very similar.

Since the heavy-fermion superconductors to date ap-
pear to have felectrons near EF, strong spin-orbit cou-
pling is present, resulting in a number of possible
states. Basically, strong spin-orbit coupling requires
that the axes of quantization of the spins be defined
relative to the electron wave vectors. The appropriate
quantization axes are therefore e„(k) =k, 8k, and qhk.

For p-wave (I=1) pairing, the pair states are there-
fore of the form k

~ S;(e„)), where the pair spin states
IS(e„)) a«(&„j,—t„t )/~&, t(t, t, + &„&„)/
W2, and ( t „j„+J t „)/J2 for i =1,2, 3, respective-
ly. It is convenient to rewrite these pair spin states in
terms of the Cartesian pair spin-state vector
(S)J

= g;x;~S;(x~) ), where the ~S;(xj) ) are defined
as above with the e~ replaced by x~. The resulting pair
syin states are k (S)J, 8k (S)J, $„(S)~, (S,)J, and
qbkx(S)~ z. A number of the ~S;(e„)) are degen-
erate. For example, in the z representation, ~St(k) )
and ~S3(8L,) ) are degenerate, but in the y representa-
tion, ~S3(8k) ) is degenerate with ~S2(k) ).
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In the UPt3, the crystal is hexagonal, and so the
crystal field breaks the above symmetries. 4 b A pairing
interaction exhibiting this crystal symmetry and lead-
ing to p-wave states consistent with experiment is of
the form

V(k, k') =3/, . Vk x;k' x;~S(x,)) (S (x, ) ~, (1)

where the quantization axis xj is doubly degenerate as
described above. The appropriate uniaxial anisotropy
is obtained for V3 ——V, e V& ——V2 = V,b. The pair states
resulting from such an interaction are of the form
A(R, k) =g;b, ;(R)k x;~S;(x,)). If all of the 6; were
nonzero, the order parameter would not vanish any-
where on the Fermi surface. b However, for V, & V,b,
only b,3~0, resulting in a polar state for H =0! For
V~b & V„ the zero-field state is an axial state of the
simple ABM form. Note that this is true even for in-
finitesimal anisotropy in V;.

One might worry about spin-paramagnetism effects
if x3=c, especially with V, & V,b. In this case, the
spin state for the c direction would be different from
that for the a and b directions, which would be degen-
erate. As Anderson pointed out, this a bdegenerac-y
leads to an A 1 phase. In the c direction, the spin state
in a given crystal-axis representation is nondegenerate,
but as discussed above, the crystal representations are
doubly degenerate: In momentum representation the
spin quantization axis is a linear combination of k and
Hk. This implies that even if the state ~S3(x,)) were
to be favored, it would not be Pauli limited in the

strong spin-orbit coupling limit! Similar arguments
lead to the conclusion that in the strong spin-orbit cou-
pling limit, there is no Pauli limiting for singlet super-
conductivity as well. Although this result may seem
surprising to some, it corresponds exactly to the case
of infinite spin-orbit scattering.

Hence, the only anisotropy due to the spins is that
arising from the density of states and the resulting
magnetization in a field. This anisotropy will always be
very small for p, BH/E„(& l. In UPt3, the largest H, 2

measured7 is for p, aH = 2kB T„so that the density of
states anisotropy could only be relevant if EF =1 K.
Although associating EF with the temperature extract-
ed from the specific heat' might lead to such a con-
clusion, the small normal-state magnetoresistance and
the characteristic energy from neutron scattering'p lead
to the conclusion that EF »1 K. These effects are
thus more likely to occur in UBe~3, which has larger
p, BH/T, and magnetoresistance values, as well as an
anomalous H, 2(T)." We shall neglect them in UPt3
for simplicity's sake.

Our calculation of H, 2 is standard: We assume weak
coupling for a homogeneous clean type-II material.
We would, of course, have nontrivial spin-orbit cou-
pling effects near the surface of the material, '2 but
these effects will not contribute to a bulk property
such as H, 2. Although EF may lie within a very nar-
row band, we neglect any temperature variation that
might arise near T, from band-structure or normal-
state many-body effects. H, 2 is therefore found by
solving the linearized Gor'kov gap equation, 9 "

b, (R, k) =27rT g „(dQ'/47r)N(0) V(k, k') „I d(exp( —2(~cu„~)

x exp( —i (m vF sgnco„k'. M ' II) b, (R, k'), (2)

where X(0) is the density of states at the Fermi ener-
gy, II=V'/i +2eA, and M ' is the inverse effective
mass tensor. We assume that M ' is diagonal; the ef-
fective masses in the c axis and a &plane are m,-and
m, b, respectively, and m =(m,bm, )' . Equation (2)
is identical to that used in Ref. 9, except for the in-
teraction [Eq. (I)] and effective mass anisotropy. For
H II c or H l c, the role of the effective mass anisotropy
is simply to multiply the resulting H, 2 by (m, /m) and
(m, bm, /m ) ', respectively. '

We first consider the case V, & V,b, implying
T;b & T,'. For H J.c, H, q( T) is given by the polar state
of Ref. 9. For H I I c, two possibilities arise. If
V, /V, b & 0.866, the SK state always dominates over
the polar state. For V, /V, b & 0.866, however, the po-
lar state with transition temperature T; &0.875 T;b has
an H, 2(0) which is higher than that for the SK state.
There would be a first-order phase transition between
the two states below the temperature To at which their
H, 2's are equal, as well as a kink in the measured
H, 2(T) at Tp.

The more interesting situation arises when
V, & V,b & 0, resulting in a zero-field polar state, ap-
propriate for UPt3. For Hllc, we get the polar state
H, 2(T) of Ref. 9. However, for HJ c, a new H, 2(T)
arises. Although for V, =—V,b, there is the possibility
of a field-aligned polar state at low temperatures, this
new "broken symmetry" polar state is the only possi-
ble one for sufficiently small V,b.

In order to solve Eq. (2) for H, 2, we expand
b, (R, k) in terms of the spherical harmonics Yl~(k).
For simplicity of notation, we choose H II x3. Different
orientations of H are equivalent to relabelings of the
crystal axes. Thus, the expansion coefficient 4&p(R)
always describes the polar state. For HJ c and suffi-
ciently weak V,b, we have to find a solution from the
coupled equations for A~ ~ and AI ~. For the special
case V,b =0, these equations decouple, as

&, implying 6(R, k) cck~', this state of com-
pletely broken symmetry (CBS) is a polar state with
the magnetic field in its nodal plane. For V,b & 0, the
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state withyartial broken symmetry (PBS) is similar to the ABM and SK states [i.e. , 5 (R, k) is a linear combination
of kt and kz]; it merges into the SK state for V,b = V, .

Since the Abrikosov vortex lattice (in which b is the ground state of the harmonic oscillator) does not solve Eq.
(2) for b,

& + t(R), we expand in terms of the complete set of harmonic-oscillator eigenstates. ' The expansion
coefficients may be written as x„-= (n ~b, tt) (n ~ht I), yielding the pair of equations

2nn+-xn +—
bn z(xn z +xn z—) bn(xn+2 xn+z ) (3)

where n„=[V,X(0)] ' —a„, n„+=[V,b&(0)] ' —a„=5+n„, and n„and b„are 1/V, X(0) times nnt' ) and

Pn, given by Eqs. (35) and (36) of Ref. 9, respectively. These quantities n„and b„are functions of the reduced
temperature t = T/T, and field h = (m,bm, /m') '/ h, where h =2eH/(2m T, /uF)'. Elimination of x„+ in favor of
x„yields

Opp a 24+42
a 22

044

For 5 0, only app contributes, and we recover the
SK state.

Near T„we expand to order H, obtaining
n„ ln(t) +(2n +1)h and b„—[(n +1)(n
+2)1' 'h, where h =7((3)h/10. Hence, to leading

order in T —T„we obtain for V, ) V,b a polar state
with H replaced by J3H. This factor of E3 was ob-
tained previously9 by expanding Eq. (2) to leading or-
der in H. This expansion of Eq. (2) to order H can be
done for arbitrary angle 0 of H with respect to c, yield-
ing an angular dependence of the slope of H, z at T,
proportional to [cosz0+ (3m,b/m, )sinzH] ' z. Away
from T„or to higher order in H, one must employ the
full continued-fraction equation.

The field as t 0 can readily be found, with use ofn„—,' ln( y4/he ) +d„, where

d„= —,
' (y((n +1)/2) —

q ( —,
' ) I

and Q (z) is the digamma function; b„
—( —,

' ) [(n+2)/(n+1)]' z. For V,b=0, iteration
of Eq. (8) yields

H„, I(0)/H, z ~~(0) =0.466(m., /m, )'/'.

Thus, the anisotropy of the CBS state varies from
(3m,b/m, )' at T, to 2.14(m,b/m, )' as T 0.

In Fig. 1, we have plotted h, 2 as a function of t for
the polar state, the SK state, the ABM state, and the
new CBS state. The ABM state has been included
since for V,b =0, the zeroth-order iteration of Eq. (8)

ann —,2Xn —2 + ann Xn + ann+ ,2Xn +2

where

a„„,= —5b„,(1 —c„)/~„+,,
a„„+z

= —5 b„(1—c„z)/n„++ z,

ann
——2nn (1 —c„)(1 —c„z)—5(c„+c„z—2c„c„z),

and c„=b„/n„+n„++z for n ~0; c z=0. The solution
to Eq. (4) is in the form of a continued fraction,

aP2a2P

(4)

(6)
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FIG. 1. Plots of h, z(t) with m, =m, b for (1) the polar
state, (2) the SK state, (3) the CBS state, and (4) the ABM
state. Inset: anisotropy 4 = hgz J (0)/h, z ~~ (0) as a function
of 5 = ln ( T"/ T')

reduces to it. The first-order iteration (i.e., adding
aoz, azo, and azz) differs from the exact curve by less
than 2%. The iteration thereafter converges very rap-
idly. We note that the CBS state has an h, z(t) curve
which differs only slightly from that for a clean s-wave
superconductor without Pauli limiting.

When V,b &0, the slope of H, z( T) at T, remains un-
changed. However, as 5 is increased, H, z( T) develops
an upward curvature, until at 5=0, the slope at T,
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jumps discontinuously by the factor W3. This is pre-
cisely as for p-wave pairing in the layered compounds.
Iteration of Eq. (8) yields for arbitrary 5 the resulting
anisotropy of H, 2(Q) shown in the inset of Fig. 1 for
the PBS state. Note that as 5 0 and ~, H, 2 ~
reduces to that of the SK and CBS states, respectively.
Between these two limits, the anisotropy of the PBS
state is a monotonic function of 5. The arrow at
5=0.617 indicates the minimum interaction anisotro-
py required for the state at zero temperature to be the
PBS state. This implies that for V,b )0.540 V„ there
will be a kink in H, 2 ~( T) due to a transition from the
PBS state to the polar state with T, = T, ~. Below the
kink temperature, the transition between these states
will be first order.

To see if any of the above features can help to iden-
tify odd-I pairing, we have briefly examined a case of
anisotropic even- I (singlet) pairing,

V(k, k') = (1 +e(k x3) j V(1 +e(k' x3) ). (9)

The ratio of slopes of H, z at T, varies continuously
from 1 to JS times the mass anisotropy (m, b/m, )
as e varies from zero to ~. For separable interactions
as above, there will not be a kink in H, 2 ~( T). How-
ever, it is easy to find a nonseparable interaction in
which a kink would arise. 9

Finally, we would like to discuss our results in view
of the recent experiments on UPt3. Resistivity mea-
surements indicate that m, b/m, = 2. The anisotropy
of H, 2 at T, appears to be somewhat greater than J2,
but less than E6. It would be consistent with an aniso-
tropic state arising from an even-parity interaction
such as in Eq. (9). We note that for this effective
mass anisotropy, there is no temperature at which an
intrinsic p-wave superconductor would have an isotro-
pic H, 2, so that the low-temperature part of the data of
Chen et al. is not expected for a homogeneous p-
wave superconductor with E& »1 K. We anxiously
await the results of ac susceptibility measurements on
larger samples.
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