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Quasicritical Behavior and First-Order Transition in the d = 3 Random-Field Ising Model
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The three-dimensional random-field Ising model is studied by Monte Carlo simulations on
L && L && L lattices with L ~ 64. Our results are completely consistent with there being a ferromag-
netically ordered state at low temperatures. For T T,+, the susceptibility and correlation length
have effective exponents similar to the pure t~o-dimensional Ising model. However, for the
random-field values studied, the transition is actually first order, driven by large fluctuations in the
disconnected correlation functions. %e suggest that the transition is first order, even for arbitrarily
small values of the random field.

PACS numbers: 75.10.Hk, 05.50.+q

The effect of a quenched random field on the phase
transition in Ising systems has been extensively dis-
cussed. In a classic paper Imry and Ma' showed that
an ordered ferromagnetic state would break up into
domains when a random field is applied if the space
dimension, d, is less than 2. This suggests that the
lower critical dimension, dt, for ferromagnetism in
random-field systems is dL =2. Their argument has
subsequently been refined to the extent that there is
now a rigorous proof3 that the ground state in d = 3 is
ferromagnetic for small random fields. This argument
can probably be extended to prove that ferromagne-
tism also exists at finite temperatures and so there
seems little doubt that dL =2. Presumably, then, per-
turbation theory, according to which the critical
behavior is that of a pure system in d —2 dimen-
sions, ~ s is not applicable in d= 3, since dL = 1 for the
one-dimensional pure Ising model. It also appears
probable that some neutron scattering experiments,
which found that the correlation length, (, remains
finite, can be understood in terms of irreversible ef-
fects~ and are not, therefore, incompatible with dL = 2.

Assuming, then, that a finite-temperature transition
occurs in d = 3 one can ask about its critical behavior.
Experimentally there is evidence that this is very
similar to the pure two-dimensional Ising model; i.e. ,
there appears to be a dimensionality shift of 1.
Despite some interesting ideas this has not been satis-
factorily explained in previous work. '

Here we describe the results of Monte Carlo simula-
tions of the three-dimensional random-field Ising
model (RFIM) on lattices with N=L3 spins where
most of our data are for L = 64, much larger than in
previous' " numerical studies. Our main results are
as follows. An analysis of our data for the correlation
length, (', and susceptibility, X, in the region above T,
where g « L gives X~ g2 'i and X~ ( T T, ) v with—

effective exponents

q = 0.25 + 0.03,

27i~ q) 4 —d (2)

as a necessary condition for a second-order transition.
This is incompatible with d = 3 and q given by Eq. (1).
An alternative possibility is that the transition should
be first order Indeed, coolin. g to somewhat lower tem-
peratures we find a large discontinuity in the magneti-
zation for L = 64 and random-field value htt = 1.
Qualitatively we find that the transition is first order
down to smaller values of AR as we increase the lattice
size. Because of the inconsistency in exponents noted
above, we suggest that the transition in an infinite sys-
tem is first order down to arbitrarily small random
fields.

We now describe our calculations and results in

y = 1.7 + 0.2,

which are compatible with the pure two-dimensional
Ising exponents, q = 4, y =

4 . The disconnected
correlation function X~" at q =0 [see Eq. (6) below]
diverges more strongly than X, and defining X "

'i, Schwartz' has shown that for any continuous
field distribution one must have q» 27l at a second-
order phase transition. Because of universality we ar-
gue that this should also apply for the binary distribu-
tion, Eq. (4), used here if the transition is second or-
der. Our best estimate by directly calculating the X "
is q —0.8, but with sizable errors, so that this is com-
patible with q» —,

' from Eq. (1) and q»2q. Howev-
er, a scaling argument shows that the transition cannot
be second order unless d —4+ q ) 0, which, com-
bined with the "Schwartz inequality" q ~ 2q, gives
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more detail. The Hamiltonian is

H = —g J,l S;SJ—g h;S;,
(i.J)

(3)

where S; = + 1, the Ji are nearest-neighbor interac-
tions on an L x L x L simple cubic lattice, and the it;
are quenched random fields with probability distribu-
tion

P(h;) = —', [l(h; —h„)+5(h;+ h )].
We set the nearest-neighbor interaction equal to unity.
Periodic boundary conditions are imposed and the
spins are flipped with the "heat bath" (Glauber) prob-
ability [I+exp(PAE)] ', where b, E is the energy
change in the flip. The computations were performed
on the distributed array processor (DAP) at Queen
Mary College, London, and the program updates
14.6x 106 spins per second. Frequently one imposes a
constraint gh;=0 (exactly) to improve the statistics.
This was not done here because we feel that the net
uniform field (of order N '/2) present with random
sampling is an important part of the physics of this
problem.

It was found useful to calculate separately the con-
nected correlation function, X (q), defined by

X(q) = N[(S,S,) —(S,),(S,),],„,

to be given by a scaling form

(7)

which defines rl T. he "Schwartz inequality" shows
that r) ~ 2q at a second-order transition for any con-
tinuous field distribution and we expect this also to be
true for the distribution used here because of univer-
sality. As ( ~ with finite q the ( dependence in Eq.
(7) must disappear so that X "(q)cc q l" ~) at T, if
the transition is second order. The local quantity
[(S;) ],„, which is obviously finite, is obtained by in-
tegration of Xd" (q) over q which shows that rl must
satisfy d —4+ ri ) 0, which gives Eq. (2).

Figure 1 shows results for X against ( T 3.91)/ T—on
a log-log plot for 4.05 ~ T ~ 6.5, L = 16, 32, and 64,
and with htt =1. Simulation time depended on size
and temperature and was 600000 steps per spin for
L =64, T=4.1, of which 200000 were discarded for
equilibration. We checked that equilibrium was
reached by doing several such runs for some of the
field configurations, starting the spins (a) all up, (b)
all down, and (c) in a random configuration, and
checking that the results were independent of initial
spin configuration. For one set of fields we checked

and the disconnected function

X" (q) = N [(S„),(S,),]„, (6)

where we define Fourier transforms by S~
=N 'QS;exp(iq R;). In these equations (. . .) T
denotes a statistical mechanics average for a given set
of fields and [. . .],„ indicates a configurational aver-
age over the fields. Note that the structure-factor
measure in a scattering experiment is the sum,
X(q) + Xd"(q). Assuming that X(q) satisfies a scaling
form X '(q) =( " ~ f(q(), where, for q( 0,
f(q()ca 1+ (q() +. . . , one can extract ( from a
plot of X '(q) against q2. We find that X(q) is self-
averaging provided that g « L. Xd"(q) is easily
evaluated in mean-field theory (MFT) by treating dif-
ferent wave vectors independently; so, for one field
configuration, the result is NX2(q) ah~i /T2. Since h„
is a Gaussian random variable with zero mean and
variance h~~/N it follows that the disconnected func-
tion is also a random variable, i.e. , it is not self-
averaging Performing . a field average yields the
well known "Lorentzian-squared" result X "(q)
= [hz X (q)/ T] in MFT. It has been shown by
Schwartzt4 that in general X "(q) ~ C[httX(q)/T],
where C is a property of the field distribution, C= 1

for Gaussian fields, C is finite for any continuous dis-
tribution, but C=O for the binary distribution used
here, Eq. (4). We expect the wave vector dependence
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FIG. 1. Plot of the susceptibility, X, against ( T 3.91)/T—
on a logarithmic scale for L = 16, 32, and 64, with h& = 1
and 4.05 ~ T» 6.5. The temperature of each point is indi-
cated. The number of field configurations averaged over
were four for L =64 (except for T=4.1 where we used
ten), sixteen for L = 32, and 32 for L = 16. The inset shows
X '(q) against q2 for q=2vr(n0, 0)/L w, ith L =64 and
n =0,1,2,3 at T=4.1. The data are an average over ten
samples. A straight-line fit works very well so that (, the
correlation length, can be extracted from X '(q)
~ 1+ (gq)2+. . . as discussed in the text. This gives
g = 7.45.
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FIG. 2. Results for X against ( on a log-log plot for
L = 64 and 32 with h& = 1. Also indicated are the tempera-
tures for each data point. The number of field configura-
tions averaged over is the same as for Fig. 1. The points are
fitted very well by a straight line with slope of 1.75. Also
shown are data for the disconnected correlation function X "
averaged over sixteen field configurations. The inset shows
data for the magnetization, m, of a single L =64 sample
with h& = 1. The crosses are the result of successively cool-
ing down with the field fixed. The circles are obtained by
equilibrating in zero field at T= 3.75 (this point is marked),
applying the field, and successively warming up. 200 000
iterations were performed at each data point of which
100000 were discarded for equilibration. A first-order tran-
sition is clearly seen.

explicitly that we reached the same state (as opposed to
a different state with the same macroscopic properties)
by computing site magnetizations. Taking data in the
range 4.1 ~ T» 5.0 and using the largest size avail-
able for each temperature, we performed a least-
squares fit by logX against log[(T T, )—/T] obtaining
T, = 3.91 + 0.03, and y = 1.78 + 0.05. Using ( T T)/—
T rather than ( T T, )—/ T, as a scaling variable we find
that the scaling region is substantially extended. If we
use (T T, )/T—, then, from the data with
4. 1 ~ T ~ 4.6, we obtain T, = 3.91 +0.03 and
y = 1.64 + 0.15. Incorporating both of these estimates
gives the effective y value in Eq. (1). The inset to
Fig. 1 shows a plot of X '(q) against q2 for L =64,
T=4 1, and q=2m (n, 0, 0)/64 with n =0, 1, 2, 3.
From the straight-line fit one finds g = 7.45, in units of
the lattice spacing.

Estimating the critical exponent y necessitates an es-
timate of T, but q can be obtained without this uncer-
tainty from the plot in Fig. 2 of X against g on a log-log
scale. The data are fitted by a straight line extremely
well with slope (equal to 2 —q) of 1.75 +0.03. This
gives our effective value for q in Eq. (1). The results

of Figs. 1 and 2 show that as T is reduced the growth
of fluctuations is similar to that in the pure two-

dimensional Ising model, in agreement with experi-
ment.

Figure 2 also shows a log-log plot of Xd"(q=0)
against g for 5.0~ T ~ 4.2 for sixteen field configura-
tions for L = 32 with hz = 1. The same sets of random
fields were used at each temperature so that the slope
(equal to 4 —q) has smaller errors than the individual
points, which have large error bars (not shown) be-
cause Xd" is not self-averaging. Given these uncer-
tainties and the curvature in the plot, these data are
compatible with'4 q ~ 27I -= 0.5 which, however,
violates the condition q ) 1, Eq. (2), for a second-
order transition in d = 3. Assuming that there is a
transition, 3 we therefore anticipate that it will ultimate-
ly be first order.

Motivated by this we took results for the magnetiza-
tion at lower temperatures. Results for a single L = 64
lattice are shown in the inset to Fig. 2, both for cooling
and for warming. Note that the hysteresis loop occurs
roughly where we estimated T, from extrapolating data
at higher temperatures. On either side of the hys-
teresis loop the results are independent of past history
and so represent equilibrium values. With L =64
equilibration is very rapid below the hysteresis loop
but there is evidence' that relaxation times increase
with system size, which may explain why irreversibility
is much more of a problem in experiments. In a finite
system the magnetization is nonzero above the first-
order jump because the random fields make the mag-
netization distribution nonsymmetric. We looked for a
stable state in the middle of the hysteresis loop, but
the system always found one of the two branches
shown independent of initial magnetization. A second
sample shows very similar behavior. Finite-size ef-
fects are important just above the jump, but not below
it, where the correlation length reaches a maximum
value of about eight lattice spacings. For small ran-
dom fields the transition appears continuous even for
L =64, which we interpret as a finite-size effect. At
smaller lattice sizes we need larger fields to see a first-
order jump, consistent with earlier Monte Carlo
work'0' on small lattices. We also note that h~ =1
lies well below the tricritical value predicted' in MFT,
and furthermore, the first-order transition found here
is driven by fluctuations, completely different from
the mechanism in MFT.

To conclude, we find there is a large temperature
range of "quasicritical" behavior with effective ex-
ponents similar to the exponents of the pure two-
dimensional Ising model. This remains to be under-
stood theoretically. However, the two-dimensional
value of q violates the necessary condition 2g ) 1 for
a second-order transition. We propose, therefore, that
a fluctuation-driven first-order transition occurs in an
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infinite system for any nonzero random field. Howev-
er, there are alternatives to the hypothesis that the
transition is first order for weak random fields. One
possibility is that the effective q crosses over to a dif-
ferent value, consistent with 2q ) 1, at very small re-
duced temperatures (T T, )—/T, . Another is that q
depends on the random field hz and becomes greater
than —,

' for some value hz ( 1.0 where a tricritical
point occurs. We note, however, that neutron scatter-
ing measurements in Ref. 8 find q ——

4 for smaller
values of the random field and reduced temperature
than ours, and so we feel that the first-order transition
hypothesis is the most natural.

After the completion of this paper, we learned that
recent neutron scattering experiments' on
Mno 75Znq 2qF2 have been interpreted as giving evi-
dence for a discontinuity in the transition in weak ran-
dom fields.
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