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Vorton Method in Three-Dimensional Hydrodynamics
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The vorton method, developed earlier by one of us, is applied to the problem of the mutual
penetration of two and four vorton rings. (A vorton is a vortex singularity. ) Abrupt jumps of vor-
ticity as well as major changes in the energy spectrum are observed in the process of destruction of
vorton rings and in the instability of a system of vortons near collapse.

PACS numbers: 47.25.Cg, 47.90.+a

In an earlier paper by one of us, ' the generalized
dynamics of three-dimensional vortex singularities
(vortons) was introduced. The vorton method, simul-
taneously, gives a visual physical model and a method
to calculate three-dimensional vortex dynamics. In
Ref. 1 some analytical results were obtained. In this
paper we investigate some more complicated problems
numerically.

The velocity field induced by an isolated vorton in
unbounded space has the form'

x( )(t) and y( )(t) are the components of position
and intensity, respectively, of the vorton labeled n.

When we use a special Lagrangian form of the equa-
tions of ideal incompressible flow, choose appropriate
initial conditions, and apply a projection procedure
(without any approximation), there results a closed
system of ordinary differential equations for the coor-
dinates and intensities of a system of N vortons':
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where the dot indicates time derivative and primed
sums omit the Q. =P term. Equation (3) reflects the
phenomenon of vortex stretching in three-dimensional
flow. These vorton equations differ from earlier stud-
ies of three-dimensional discrete vortex dynamics (see
the review by Leonard2) in that there is no need for
assumptions about a finite core or finite viscosity to
establish a well-posed dynamical system. The vorton
method is efficient computationally, especially when
we consider that programs are easily vectorized and, as
will be shown, four vortons are enough for a reason-
able description of a vortex ring.

By analogy with the spectral description of linear
vortices, we can derive the energy spectrum of a vor-
ton system. From (1),

v,'a'(k) = Jt v, 'a (x)e'"'"d'x
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The spectral density of the energy is determined by

E(k) = gE p(k),

E p(k) = —,
' (27') 3J dskv;( )(k)v;(p)( —k). (6)

The integral in (6) is taken over a sphere Sk of radius
k in Fourier space. If the integral f E(k)dk con-

0
verges, then

8'= Jt E(k)dk= —,
'

J v;2(x)d x,

would represent the energy of the system. However,
the self-energy of a vorton is infinite. Thus it makes
sense to define the interaction energy

8';„,= JI E;„,(k) dk, E;„,(k) = g'p E p(k). (7)
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Substituting (4) into (5) —(7), we obtain

E(k) =E, +E,„,(k), E, =(I/6~') g.y,"y,",
E,„,(k) = /[@I(kr p)y; y;'P'+&2(kr p)y; n; y,' ni ],

27K ~ p

Pt(z) = z [(z —1)sinz +z coszl, @q(z) = z [(3 —z ) sinz —3z cosz],
—1 ( (n) (p) + (a)n (np) , (p) n (n, p))
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Expressions (8)—(11) provide the basis for the nu-
merical investigation of the evolution of the energy
spectrum in time (Fig. 3). For the dynamical system
(2), (3), g;„, is not an integral of motion (see also the
results of our numerical experiments below). Because
of three-dimensional stretching, the interaction energy
can be transformed into self-energy of the vortex
singularities. ' This kind of inviscid dissipation of en-
ergy can support the realization of the inertial-range

law"4 for the energy spectrum. This tendency is3

confirmed by our numerical experiments.
In Ref. 1, the vorton ring was introduced as the

discrete analog of a continuous vortex ring. It is a sys-
tem of identical vortons placed tangent to a circle at
the vertices of a regular polygon. In such a configura-
tion, the vorton intensities, according to (2) and (3),
do not change, and the ring itself drifts perpendicular
to its plane with a velocity that was calculated analyti-
cally in Ref. 1.

It is well known5 6 that two identical vortex rings,
placed one behind the other, will penetrate into one
another. "The velocity field associated with the rear
vortex ring has a radially outward component at the
position of the front ring and so that radius of the
front ring gradually increases. This leads to a decrease
in its speed of travel, and there is a corresponding in-
crease in the speed of the rear vortex, which ultimately

passes through the larger vortex and in turn becomes
the front vortex. The motion is then repeated. " Cal-
culations of this effect are usually done under the as-
sumption that the flow is axisymmetric, the rings are
thin and the distance between rings is small compared

~ ~ ~

with their radius (see, for example, Klyatsktn a. In
this approximation the parameters of the rings are
nearly invariant during their interaction.

The problem is much more complicated and in-
teresting when the possible three-dimensional instabil-
ity is taken into account and the distance between
rings is comparable with their radius. This kind of
configuration of rings develops approximately, for ex-
ample, when an axisymmetrical body moves through a
fluid. Here we apply the vorton method to this prob-
lem.

In Figs. 1—3 and in the discussion below, we present
some results of three numerical experiments of in-
teractions of two n-vorton rings with n = 4, 12, and 24.
The initial radius ro, the distance ho between rings,
and the specific intensity &p = ny p/27r fp is the same in
all these experiments. The numerical results were ob-
tained by the solution of (2) and (3), with a simple
fourth-order Runge-Kutta scheme.

All three experiments give almost five full periods
in which the rings mutually interpenetrate. After this,
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FIG. 1. The abscissa X is time; the ordinate Yis the dis-
tance Ah between two four-vorton rings in the direction of
the axis of the rings (initially the first one is behind).
r() =

2 J2, h() = —1, nyp= 4042.

FIG. 2. The system of two twelve-vorton rings: (a) The
abscissa X is time; the ordinate Y is the absolute distance
between rings [(b, h)2+ (Ar )2]'i~ (Ar is the radial distance).
(b) The abscissa Vis time; the ordinate Yis the intensity of
one of the vortons in the ring.
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e system of two 24-vorton rings: (a) The abscissa Xis ink the ordinate Y' th E(k) his e at t e initial moment. (b)
e a scissa Xis 1nk; the ordinate Yis lnE(k) at the moment of destruction f th
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o e rings. c e a scissa Xis time; the ordi-
nate Yis d8';„,/dt, the inviscid dissipation of energy.

the system becomes unstable as three-dimensional
components of vorton intensities appear with ex-
ponentially growing amplitudes and changing signs.
The striking feature of these calculations is that the
number of stable periods is insensitive to the number
of vortons. Real vortex rings also become unstable
after a few oscillations.

Let us consider some details of the numerical exper-
iments. In the language of vortons, conservation of
the specific intensity of a ring (by Kelvin's circulation
theorem) means conservation of y/r. This ratio
changes by roughly 12%, 1.5%, and 0.7P/o for n = 4, 12,
and 24, respectively. The period of the interpenetra-
tion of rings decreases by 8.1% from n =4 to n =24.
The "moment of inertia, " which is proportional to

2 . 2ri + r& (where ri and rq are the radii of the rings), is
conserved with a precision of 0.1% for n = 24. The ab-
solute distance between the rings [Fig. 2(a)] is not
constant (as is the case of ho «rp) and has sharp
minimums and smooth maximums that reflect the
strong interaction of the rings when one is inside the
other.

After the destruction of the rings, when vorton in-
tensities abruptly increase, the energy spectrum [Fig.
3(b)] develops a power law k " with slope n —1.7,
which reflects an energy cascade toward small scales.
The power-law spectrum can be seen for 0 & ink & 1

(which is the natural interval for this system with a
small number of vortons and a limited range of dis-
tances r t3) between two asymptotic regions of
(8)—(10): A plateau exists when k «1 and the oscil-
latory approach to another plateau when k )& 1. This
agreement with the —,

' law may now be considered to
be accidental because of the small number of vortons
in this experiment. At the same time, we observed
that the average cosine of the angle between vorton in-

tensities jumps from —0.15 to +0.5. This indicates
the existence of a coherent structure associated with
the power spectrum.

The case of antiparallel rings moving toward each
other is equivalent to the interaction of one ring with a
rigid stress-free wall. The specific intensity is not con-
served in this case, because asymptotically vortons of
one ring cease to interact with each other, correspond-
ing to the movement of vorton pairs in infinite space.

We also carried out experiments with four twelve-
vorton rings and initial distances

h,('» = h,('4& = 0.05h,t'» = —O.O5rfp

(rp is the initial radius of rings). We can see (Fig. 4)
the fast and stable mutual penetration of two neigh-
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FIG. 4. The system of four twelve-vorton rings. The
abscissa X is time; the ordinate Y is the distance between
neighboring vortons in one ring, which is proportional to the
radius of a ring (each maximum and minimum corresponds
to a moment of interpenetration of the rings) (nyp=120,
hp= —1, rp=1).
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FIG. 5. instability of the collapse of the three-vorton sys-
tem. The abscissa Vis time; the ordinate Yis inly~ (y is the
vorton intensity of one of the vortons).

spectrum develops a power law with slope n —1.
Shortly afterward, we observe the peak of inviscid dis-
sipation of energy.

In later publications, the vorton method will be ap-
plied to study the stochastization of the vortex rings,
the evolution of elliptic vortex rings, the expelling of
vortex rings from horseshoe vortices in the boundary
layer, and the detailed analysis of coherent structures
connected with power-law energy spectra. From the
derivation of Eqs. (2) and (3) given in Ref. 1, it fol-
lows that the vorton method can be used for a variety
of physical systems including magnetohydrodynamics.

This work was supported by the National Science
Foundation under Grant No. ATM-8310210.

boring rings superimposed on a slow interaction
between the two pairs of rings. The specific intensity
is conserved to within 0.4'/o. Further numerical exper-
iments show that with appropriate initial conditions,
systems of three and more vortex rings become chaot-
1c.

Finally, we investigated different configurations of
three vortons. It is interesting to study configurations
that are initially close to collapsing, ' because they in-
volve strong interactions and can correspond to the
physical mechanism of "vortex catastrophe" (sharp
increase of integral vorticity f ~Q~d3X). We observed
abrupt jumps of vorticity (Fig. 5) at the moment t„
which correspond to the collapse of the unperturbed
system. This circumstance is connected with the simi-
larity of collapse. ' When the intensity jumps, the
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