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We formulate the renormalization-group-improved theory for an m, ~0 (massive) QCD Lagran-
gian. The Green s functions are parametrized in terms of two renormalization-group —invariant
quantities, Mo and A, . The theory exhibits usual analyticity structure for every Mo )A, e' . In
the limit MD=A, e', m, becomes zero. The theory exhibits bifurcation in this limit, and chiral
symmetry remains broken. (Pp) is calculated in this limit.

PACS numbers: 12.35.Cn, 11.10.Gh, 11.30. Qc, 11.30.Rd

In this paper, we report on the continuing study of the physical and mathematical properties of dynamical sym-
metry breaking for the vectorlike QCD theory. This study was initiated in an attempt to apply the Nambu —Jona-
Lasino mechanism to the renormalizable QCD. Our study has been carried out within the context of a
renormalization-group (RG) improved field theory, with the MS scheme used exclusively for regularization. In
this scheme, we write the complete Lagrangian as

Ltot Ltree +I counters

with

ancl

L««= —tity BQ —mrQQ+ igrfy&T~QA&~(p, /4vr)'I +. . .

L„„„„„=—(Z2 —1)gy BP —(Z Z2 —1)m„QQ+ i (Zt —1)g,gy&TQA&(p, /4m)' +. . .

(2)

where n =4 —e, the Z's represent the li(e) counter-
terms needed to define finite, renormalized n-point
Green's functions, and p, is the 't Hooft renormaliza-
tion scale. To one-loop RG accuracy, and in Landau
gauge, s Z2 ——1, while ( T T'= CfI, where I is the unit
matrix)

I

All the n-point Green's functions calculated with the
Lagrangian (1) now yield finite answers that depend
on p, A. „, m„and p, . Consider the chiral-flip (X.f.)
part of the quark two-point function. It may be written
in the form, accurate to one-loop RG,

Z = (1 + b X,/e), n =6Cf/b (4) I'x r = —im, (lt, /Z~) = —iMp, (7)

In (4), we have written A.„ for g, /16m', and it satisfies
the one-loop RG equation

p, BA.„/Bp, = —bA. „=P .

To the same one-loop RG accuracy, m, satisfies the
RG equation

p, Bm, /Bp, = —6Cfl.,m, —= P

and will be in accord with renormalization as long as

p, Xp
—= p, +pg +p~ Xq =0. (8)

d B B B

dp, ~
p, Z, m„

may be obtained iteratively from the equation
(x'"l = I/li~ in the nth iteration, with xto' = I/A. ,)

x'"+"=f(x'"' p', m' ' X ) (9)

where
1

f(x,p, m, , p, , x„) =A., '+ —,
' b Jl zdl In[m, (A.,x) +Zp ]/p, e' }. (lo)

The usual MS-renormalized perturbative series for the two-point function, to one-loop RG accuracy, can be gen-
erated systematically by this iteration, with A.~ being the n ~ limit of x(n).

Since X~ is a RG invariant, Eq. (9) and, in turn, Eq. (7) may be rewritten entirely in terms of RG invariants.
Apart from the QCD invariant cutoff, A„defined to one-loop RG accuracy by the equation

+ —,
' b In(A'/p') =O (11)
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we also introduce the independent parameter, Mp, de-
fined by

m, =MO[1+ —,
' bh. „ln(MO/p, e' )]+,

which by (11) may be rewritten as

m„=M [ ,' A„b l—n(.Mo'/A, 'e' '],

o.5o

0.25

Mp ~A, e &/6 (13)

In order that I, be real, Mp has to be greater than or
equal to the critical value listed in Eq. (13).

We can now write Eq. (7) directly as the implicit
equation ( M,' = Mo e)

0.2 5 o.so o. t5 !.OO

pX

FIG. 1. M~ as a function of p' in the range 0 ~pP —2~ M, , in units of M, .

Xpb Mp
Mp =Mp 1+ ln

]
1

2 M2/'p2+1
1+

Mp
(14)

,' b log(M, /—A,e'~ ) «0,
where in Eq. (14) we have further performed the integration called for in (10).

For every ~p in the range

(IS)

O~Pp(~,
M~ is an analytic function of p in the cut p plane, with the cut along the negative p (timelike) axis. The location
of the branch point depends on the parameter A. o, being given by

p (branch point) = —Mo e [1 —(2/b Xo) (1 —e '~ ) +0 ( X, ) ]. (16)

At the branch point, Mp +p vanishes, so that the pro-
pagator actually has a pole at the branch point.

The high-energy behavior of M~ may easily be ob-
tained from Eq. (14), and is given by (j y ) = lim —(T[y (x)y (y)])

M, —M, [ —,'),~in(p'/M, ')]- .
p2~QQ

(17) dp2 p Mp= —4N,
167r p2 +M (19)

Behavior (17) is well known from earlier studies of
renormalization-group theory. However, at the critical
limit when Mp equals A, e', A.p becomes infinite and
the right-hand side of (17) vanishes.

In fact, at the critical limit, bifurcation sets in. For
p «M, (=A, e ~', the critical mass squared), M~
tends to the chiral symmetric phase, i.e. , Mp vanishes.
For p & M, , Mp opts for the chiral-broken phase, i.e. ,
M~ is not equal to zero (see Fig. 1).

In the complex p plane only the region inside as
well as along the boundary of the "fig leaf" will have
Mp not equal to zero. This domain may be deduced
from Eq. (14) by setting of the argument of the loga-
rithm equal to one. As before, at the timelike point
p Alp Mp +p vanishes. The propagator, at the
bifurcation limit, is analytic inside the domain, but has
a singularity at the timelike cusp node shown in Fig. 2.

With this Mp, we are finally in the position to calcu-
late (pp). A careful analysis of the renormalization

In (19) we have already continued to the Euclidean p
and integrated over the angles. For Xp finite, the in-
tegral produces infinities, a situation which compli-
cates the renormalization of (Ptli). This will be dis-
cussed elsewhere. In the critical limit, however,

~, the integral is finite, and (PP) does not need
renormalization. Indeed, in the bifurcation limit, the
vacuum expectation value, apart from N, (the dimen-
sionality of the fermion representation), is universal.
The integral can be performed numerically, with the
result that

(PP) = —0.0398N, A,'. (20)

To compare with current-algebra determinations, it is
necessary to multiply Eq. (20) by M( = A, e'~ ) to find

M (PP) = —0.0470N, A, . (21)

An accepted value of 0.15 GeV for A, yields a value of
9.24 X10, which is remarkably close to the current-
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FIG. 2. Shown here is the upper half of the "fig leaf"
domain. The timelike region is along the negative real axis.
Both axes are in units of M, . The lower half of the domain
is obtained by reflection about the real axis.

algebra estimate of 8.8 X10 s for the up quark. 9

Finally, we make a few concluding remarks:
(i) The analysis given here is a generalization of our

earlier work on the RG analysis of the Nambu —Jona-
Lasinio mechanism for QCD. We have carried out the
discussion here to one-loop RG accuracy only for sim-
plicity. The generalization to two-loop accuracy will be
discussed elsewhere.

(ii) We emphasize once again the universal charac-
ter of the bifurcation limit. The function shown in
Figs. 1 and 2 does not depend on the Clebsch-Gordan
coefficients of the group; it only depends on the spin-1
nature of the gluon that has been exchanged. This
analysis can therefore be applied to the class of hyper-
color theories.

(iii) An open question for the moment is how the
temperature can affect the bifurcation limit.
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