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Violation of Causality in Relativistic Quantum Theory' ?
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We show that states of systems which, in a very general sense, are approximately localized at
time t =0 in a finite region, with exponentially bounded tails outside, violate Einstein causality at
later times. Implications are discussed.

PACS numbers: 03.6S.Bz

Einstein causality means no propagation faster than
the speed of light. Some time ago the present author'
proved a theorem that a particle which at t = 0 is local-
ized with probability 1 in a finite volume of space im-
mediately develops infinite "tails, " irrespective of the
particular notion of localization, be it in the sense of
Newton-Wigner or others. For the Newton-Wigner
case this phenomenon had already been observed pre-
viously, and it also occurred in some models in which
localization was expressed by means of a current den-
sity four-vector. 3 Later, an alternative proof of the
theorem of Ref. 1 was given, and it was extended to
relativistic systems5 and to quite general interactions. 6

The upshot of Ref. 6 was that this acausal behavior of
strictly localized states is already entailed by very weak
assumptions on the energy-momentum spectrum, by
not much more than positivity of the energy.

At that time the obvious way of these difficulties
with casuality was, of course, to assume that such a
strict localization is not possible, that every particle al-
ready has tails, exponential say, to begin with. This
would imply, for example, that no self-adjoint position
operator exists, a consequence one could live with.

In this paper I show that the situation for localiza-
tion and causality is more complicated than previously
thought. I will demonstrate that also relativistic parti-
cles or systems with exponentially bounded tails at
t = 0 violate Einstein causality at later times. Some of
the questions this result raises will be discussed at the
end of the paper.

consequence of finite propagation speed. Let-
/, = exp( —iHt) Pp denote the state of a physical sys-
tem at time t (lt =1). Using one of the basic princi-
ples of quantum mechanics we assume that the proba-
bility of finding the system at time t inside a region V
is given by the expectation value of an operator, say
N( V). Clearly, 0~ N( V) ~ 1, but no further proper-
ties are required. We say that a system is localized
with exponentially bounded tails at t =0 if the proba-
bility of finding it outside the ball 8, of radius r around
the origin decreases at least exponentially for large r,

(Ap. N(& 58, )pp) ~ KI exp( —K2r")

~ K~ exp( —K2(~a~ —c't —rp)").

Let U(a) be the translation operator. Then9

N( V, ) = U(a) N( V) U(a)".

(2)

(3)

One may, if one wishes, adjust the constants E~ and
K2 such that Eq. (2) holds for all

~
a

~

~ c't and with rp
omitted. Schwarz's inequality, applied to
(N( V)' 2pp, N( V)' 2U( —a)P, ), then gives

for all ~a~ ~ c't ~ 0.

~ K'exp( —K(~a~ —c't)") (4)

FIG. 1. Derivation of Eq. (2).

where KI 2(pp) are constants and where we will con-
sider the exponent k = 1 for a single particle and k = 2
for a system. By adjustment of the constants, Eq. (1)
may be taken to hold for all r ~ 0.

Let us now assume that the propagation speed is fin-
ite, bounded by c', say, where c'~ c, and c=1 is the
speed of light. We consider a situation as depicted in
Fig. 1. Vis a region of diameter rp, a ball say, V, its
translate by a. Let titp be a state with exponentially
bounded tails at t = 0. Now consider a later time t & 0
and let a = ~a~ & c't+ rp. Then the probability of find-
ing the system at time t in V, is less than or equal to
that of finding it outside the ball 8, at time 0.a —c t —ro

Hence, by Eq. (1), one has for all ~a~ & c't+ rp

(0 .N( V.)4 ) )
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This inequality is a consequence of the assumption
of finite propagation speed c' and of the assumption
that Qo has at most exponential tails. Equation (4) will
be the starting point for the mathematical deductions
below.

An alternative starting point leading to the same
acausal behavior below is the following. If there is a

@o such that 1CIO=X( V)' po then, by Schwarz's ine-
quality and Eq. (2), one has for I a I

«c'r «0
l&@,, U( —a)y, ) I-~-expI —~(lal-c r)"]. (4)

This inequality means that the overlap between Q, and
the translated state U(a)$0 at r =0 decreases at least
exponentially in Ial —c't Equ. ation (4') can be ob-
tained directly from Fig. 1 by an argument similar to
the one leading to Eq. (2) if one believes —not quite
reasonably —that widely different spatial localization of
two states results in a small overlap. This avoids the
introduction of the operator X( V). But in my opinion
the motivation of Eqs. (2) and (4) is physically more
appealing and uses more basic principles of quantum

mechanics.
Violation of Causality .I—will now prove the follow-

ing theorem: A relativistic particle or system which at
t = 0 is localized with exponentially bounded tails
(k = 1 and K2 & 2m for a particle, k = 2 for a system)
violates causality at later times.

We first consider a free particle of mass m «0 and
arbitrary spin, which has exponentially bounded tails.
We will show that the assumption of finite propagation
speed c' will lead, through Eq. (4) or Eq. (4') with
k=1, K ) m, to a contradiction. We choose Vlarge
enough so that (go, IV'( V) po) e0 and put p —= N( V) 1iio

[in case of Eq. (4') no X( V) is needed and we put
$ —= @o]. Then, for any fixed t, the function

f, (x) —= (@,tI( —x)q, )

decreases as exp( —E lxl) for»rge Ixl and thus has a
Fourier transform f, (p) which is analytic in the strip

I Im p I ( X. For a free particle one has 0=P-
= (p2+ m2) 'i2, and thus in the momentum-space
representation

f, (x) = (27r) ' 'J O'I2 exp(i p x)exp[ —i (I2'+ m')' 't@(p)p(p),

where summation over spin indices is understood.
Hence the integrand has to be analytic in p for
Im I p I ( K Because of the presence of the square
root, this can happen for two distinct times only if the
integrand vanishes identically. But then f, (x) —= 0 for
all x and t, which implies for x= 0, t = 0, that

(go, I1I( V)po) =0 [or (Qo, Qo) =0 in the case of Eq.
(4') ], a contradiction.

Now let us consider a general relativistic system with
possible internal interaction. This case is more subtle
since now the energy-momentum operator need only
satisfy P"P„«0. We will assume that the system has
exponentially bounded tails, with exponent k=2 in
Eqs. (4) and (4'). We need only consider translations
in the direction of the x' axis. We set

g, 2= —,'&2(r +x'),
P -,

—= —', JZ(P'+ P').

With $ as in Eq. (5), we define the function

I will show that Eq. (4) [or Eq. (4')] with k=2 im-
plies f= 0, in part—icular f(0, 0) =0, which means that
(QO, X( Vlgo) =Q [or (Po, Po) =0 in the case of Eq.
(4') ], the same contradiction as before.

I employ Jensen's inequality, '

p 2'fT

»glg(0)l-(2 ) '„, d&«glg(«")I

for a function g(z) analytic in Izl ( 8, 8 & r. I de-
fine, for I wx I

~ 1 and fixed arbitrary zo = (o+ iy o, y o

11

01 —W1
O 01 —K2

g(W1 W2) =f W' +(—1 1y2 +~21+ w1 1+ w2

Then g(Q, 0) =f(zt, z2 ), and g is in each variable ana-
lytic on the unit disk and continuous including the
boundary, except possibly at ~+= —l. I now apply
Eq. (7) twice to g(w1, w2), first for w1 with w2 fixed
and then for w2. In the limit r 1 we obtain (by
Fatou's lemma)

f(~, , ~, ) —= ( U( —x'e, )y, , e)
= (y, , exp[ i(P g, + P+g2) j@). (6)

Since P+ «0, f extends to an analytic function
f(z1,z2) fOr Imz1 2 ) 0 WhiCh iS COntinuOuS and
bounded by 1 for Imz1 2 «0.

glf(~, , ~,)l

$1 I:(y„')'+ (g. —0.')'1&

~oo

«glf(z, ',z,') I

» -', ' j
K=1

loglg(0, 0) I

p 277 2' i8& AD&2~ (27r) 'J d0, „f d02loglg(e' ', e' ') I.

A change of variable,

g„=g„+iy„(l —expi0„) (1+expiO„)

and insertion for g from Eq. (8) then gives'

lo
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Now with use of Eqs. (4) and (4'), a trivial compu-
tation shows that log~ f ~

is bounded in region I of Fig.
2, up to a constant, by

Therefore the integral over region I equals —~ for
k = 2 and then so does the whole integral because else-
where log ~f ~ may be estimated by 0. Thus
f(zt, z& ) = 0 whenever, 1m' ) 0. Continuity then
implies f= 0. This completes the proof. '3

Discussion. —The violation of casuality exhibited
above expresses itself in essentially the following way.
If a system has exponentially bounded tails at t =0
then, with finite propagation speed, it should still have
such tails at later times, only shifted further out to in-
finity. As I have shown above this cannot be the case.
Hence the state ("wave packet") spreads out to infini-
ty faster than allowed by finite propagation speed.
Conceivably, such a behavior might then also occur
for systems which have only powerlike tails in their lo-
calization.

A possible way out of these difficulties may be to as-
sume that states of particles or systems with exponen-
tially bounded tails do not exist in the theory. But
what if one had a similar behavior for powerlike tails?
Another way out might be to assume that such well-
localized states require infinite energy to prepare, i.e. ,
that the expectation value of 0 is infinite. This is a
question that can be answered only in definite models,
but to judge from the fact that already the Newton-
Wigner position operator has states of finite energy
which are strictly localized in bounded regions this
seems not to be a very likely general possibility.

The exponential bound in Eq. (1) for the tails is not
needed in this form for every r ~ Ro. It suffices to
have it only for a sequence r„,I.„=nAO, say, since the
probability must be monotone in r, Not needed and
not assumed is commutativity of the N( V)'s —Eq.
(4') does not even contain them and Eq. (I) is a prop-
erty of individual matrix elements. However, if one
had finite propagation speed one would expect com-
mutativity for disjoint regions. This in turn would fa-

xo=t

X]

FIG. 2. Integration region for Eq. (9) .

cilitate the preparation of states with exponentially
bounded tails. But then one gets a contradiction to
finite propagation speed, a vicious circle.

Full relativistic invariance did not enter in our
derivation; only the energy-momentum (spectral) con-
dition P~P~~0 was used. ' We therefore expect the
results to carry over to more general circumstances,
similarly as in Ref. 6.

This possible acausality is seen more as a problem of
the underlying theory than as an experimentally verifi-
able prediction. For the latter, one would have to
prepare, at t =0, a sufficiently large number of well-
localized particles which do not interact, e.g. , are suffi-
ciently far apart, and then measure their arrival time at
another location. If more arrive than allowed by the
tails in the localization, one would have violation of
casuali ty.

In conclusion I would like to point out that there
may well be a connection between the above result and
the Einstein-Podolsky-Rosen paradox and Bell's ine-
quality. 's For the latter the locality (causality) as-
sumption plays a crucial role, and intuitively this leads
to interpretational difficulties.

I would like to thank T. Wolff and J. Bourgain for
mathematical discussions and W. A. J. Luxemburg and
B. Simon for the hospitality extended to me at Califor-
nia Institute of Technology. This work was supported
in part by the Stiftung Volkswagenwerk.

&a~Permanent address.
&b&Address until fall l 985.
'G. C. Hegerfeldt, Phys. Rev. D 10, 3320 (1974). For

possible implications cf. E. Prugovecki, Stochastic Quantum
Mechanics and Quantum Spacetime (Kluwer Academic, Hing-
ham, Mass. , 1984).

2G. N. Fleming, Phys. Rev. 139, B963 (1965). This was
also investigated by S. Schlieder, in Quanten und Felder, edit-
ed by H. P. Durr (Vieweg, Braunschweig, 1971), p. 145. It
was later shown by S. N. M. Ruijensenaars, Ann. Phys.
(N. Y.) 137, 33 (1981), that the amount of causality viola-
tion tends to zero asymptotically.

3B. Gerlach, D. Gromes, and J. Petzold, Z. Phys. 202, 401
(1967), and 204, 1 (1967), and 221, 141 (1969);
D. Gromes, Z. Phys. 236, 276 (1970).

4B. Skagerstam, Int. J. Theor. Phys. 15, 213 (1976).
SJ. F. Perez, and I. F. Wilde, Phys. Rev. D 16, 315 (1977).
6G. C. Hegerfeldt and S. N. M. Ruijsenaars, Phys. Rev. D

22, 377 (1980).
7In this context, positive-operator —valued measures have

been studied; cf., e.g. , D. P. L. Castrigiano and R. W. Hen-
richs, Lett. Math. Phys. 4, 169 (1980); for photons see
K. Kraus, in The Uncertainty Principle and Foundations of
Quantum Mechanicsedited by W, . C. Price and S. S. Chissick
(Wiley, London, 1977), p. 293.

8This operator is not needed if one starts directly from Fq.
(4') below. With a self-adjoint position operator, N( V)
would just be the projector in its spectral decomposition be-
longing to V.



VOLUME 54, NUMBER 22 PHYSICAL REVIEW LETTERS 3 JUNE 1985

Au d2x
(y

=Jt (flu/r)n) ds

f 2'= r ( d/ dr) J u ( r e'~ ) d0 —2' n ( r)
0

0=
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