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Differences between Lattice and Continuum Percolation Transport Exponents
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We use a scaling analysis to estimate critical exponents for the electrical conductivity, elastic con-
stants, and fluid permeability near the percolation threshold of a class of disordered continuum sys-
tems (Swiss-cheese models), where the transport medium is the space between randomly placed
spherical holes. We find that the exponents are significantly larger than their counterparts in the
standard discrete-lattice percolation networks, except for the case of electrical conductivity in two
dimensions, where they are equal.
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In this note, we consider transport properties near
the percolation threshold of a class of "Swiss-cheese"
continuum models, where spherical holes are random-
ly placed in a uniform transport medium. We find that
the exponents governing the behavior of electrical
conductivity and elastic constants in such media can be
quite different from the corresponding ones in the
conventional discrete-lattice percolation models. ' 4

We obtain a new exponent also for fluid permeability
in the pore space of a system of random, overlapping
spherical grains. These results may be contrasted with
the exponents for geometrical percolation properties,
such as the correlation length exponent v, which have
been previously confirmed by simulations to be the
same for these models as for ordinary lattice percola-
tion. 5 6

The results of our analysis are summarized in Table
I for the Swiss-cheese models in two and three dimen-
sions. The exponents t and f are defined by the as-
sumption that the macrsocopic electrical conductivity
X and the shear modulus iV vanish as the volume frac-
tion q of holes approaches a critical value q„according
to the power laws X —(q, —q)', and N —(q, —q)f.
The fluid permeability k, defined as the volume-rate of
fluid flow through the space between the random
spheres, under a unit macroscopic pressure gradient,
will clearly vanish at the same value q, of the sphere-
volume fraction, and is assumed also to follow a power
law, k —(q, —q ) '. We find, in two dimensions, that
the conductivity exponent t is the same as the expo-
nent t for a standard lattice resistor network at percola-
tion, but that the exponent f; for the present model is
significantly larger than the exponent f' of a lattice
model with both bond-stretching and bond-bending
elastic forces, which was recently studied. ' 4 For the
three-dimensional Swiss-cheese model, we find that
both t and f are larger than the corresponding discrete
percolation exponents. Moreover, while the permea-
bility and conductivity exponents are identical to each

other in the standard lattice percolation model, we find
that e is dramatically larger than t in our continuum
model, in both two and three dimensions.

In our analysis, we follow previous authors5 7 in

mapping the continuum model onto a type of discrete
random network. Unlike the standard discrete per-
colation problem, however, we must employ a continu
ous distribution of bond strengths, and our analysis
shows that in many cases there is a large probability
density for finding a small bond strength. It has been
known for some time that such a distribution can lead
to an increase of the conductivity exponent. s 9 Here
we examine the elasticity, as well as the conductivity
and permeability exponents, by considering the contri-
bution of the "singly connected bonds" in the
"nodes-links-blobs" picture of the percolation back-
bone, 'o similar to the analysis of Kantor and Webman
for the lattice elasticity problem. 2 Although our
method is different from those in Refs. 8 and 9, the
various methods lead to rather similar results, at least
in the conductivity case.

The mapping of the Swiss-cheese model onto a
discrete random network was described by Elam, Ker-
stein, and Rehr, s and is illustrated in Fig. 1 for the
two-dimensional case of random circular holes
punched in a conducting, elastic sheet. In higher
dimensions, the construction corresponds to a Voronoi
tesselation, and the bonds are the edges of the Voro-
noi polyhedra. In two dimensions, a bond is present if
the two neighboring holes do not overlap, but the
"strength" of the bond i depends crucially on the
channel width 5; [Fig. 1(b)]. It is important to note
that 5; has a continuous probability distribution p(5)
which approaches a finite limit p(0), for 5 0+.
Although there will clearly be some short-range corre-
lations between the values of 5; on nearby bonds,
these correlations should not affect the finiteness of
the distribution for 5 0, and we shall ignore such
correlations entirely.
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FIG. 2. Narrow portion of a bond, passing between three
overlapping spherical holes, in the three-dimensional model.

FIG. 1. Swiss-cheese model in two dimensions. Straight
Ilines in part (a) show the bonds of the superimposed
discrete network; dotted lines are the missing bonds.
Dashed lines in part (b) outline a rectangular approximation
to the illustrated narrow neck.

Next, we shall analyze the strength of a bond in the
two-dimensional example. For the elasticity problem,
the bond-bending force constant y;, associated with a
narrow neck of width 5;, is defined such that —,

' y;02 is
the energy necessary to bend the neck by a small angle
0 For .small 5; it is given, up to a constant of order
unity, which we ignore, by

y g 5/2/~l/2

where Fo is the two-dimensional Young's modulus of
the constituent material and a is the hole radius. This
result may be understood if we approximate the neck
by a thin rectangle of width 5; and length l; = (5;a ) '/,
and use the classical result y; —Yo5;/12/; for a two-
dimensional (2D) bent-beam problem" [see Fig.
1(b).] We note that the corresponding result for the
2D electrical conductivity is given by g, = o-&5,'/ /at/,
which has a much weaker dependence on 5;.

In the three-dimensional Swiss-cheese model, the
smallest cross section of a bond has roughly the shape
of a triangle (see Fig. 2). By virtue of the Voronoi
construction, s 7 the centers of the three holes nearest a
bond must be each at the same distance s; from the
bond, and the three sides of the triangular cross sec-
tion are each proportional to the difference 5; between
s; and the hole radius a, for smail 6;. Since this small-
est cross section persists over a distance which is
roughly (5;a ) ', we find that the bond has an electri-
cal conductance g; —6;, while the force constant y;
for bond bending or for torsion is proportional to 5'?i'2.

We expect that the distribution of s; will be smooth in
the vicinity of s; = a, so that 6; again has a finite proba-
bility density p(0), in the limit 5; 0.'2

Next we consider how these bonds are connected in
the macroscopic system. In the nodes-links-blobs pic-

ture of percolation backbones, the conducting back-
bone of the infinite cluster is imagined to consist of a
network of quasi-one-dimensional string segments
(links), tying together a set of nodes whose typical
separation is the percolation correlation length g —(q,—q) ". Each string is supposed to consist of several
sequences of singly connected bonds, in series with
thicker regions, or blobs, where there are two or more
conducting bonds in parallel. 'o

To estimate the macroscopic conductivity, we ignore
the resistance of the blobs, and approximate the con-
ductance 6 of a string by

(2)

where the sum is restricted to the L, 1 singly connected
bonds on the string. It has been shown' that the typi-
cal value of Lt is proportional to (q, —q) '. In the
conventional case, where each bond has unit conduc-
tance, the conductance of a string will be L, 1 ', and the
conductivity of the network will be $ —('2 ~Lt
where d is the spatial dimension. Thus, this analysis
predicts t = 1+ (d —2)v = tt, a result which slightly
underestimates the true value of t in two and three
dimensions. ' '

For the elastic problem, we define a force constant k
for a string such that —,

' Eu is the energy cost to dis-
place one end of the string by a small distance u, when
the other end of the string is clamped in position and
orientation. If one only considers the compliance of
the singly connected bonds in the string, one finds

where y; is the bending force constant of bond i, and
(;, the moment arm of the ith bond, is a length of or-
der g. If all bonds have the same bending constant, as
is the case in the conventional lattice percolation
model, we find K —y/Lt(2 Since the macroscopic.
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elastic constants are proportional to g2 dK, this im-
plies the relation f=1+dv = f&—, a result first ob-
tained by Kantor and Webman.

Now we must estimate a typical' value of the string
conductance G or the force constant K for our case,
where there is a distribution of bond strengths. If a
string contains many singly connected bonds, we
should be able to replace the sum in Eq. (2) or (3) by
an integral over the probability distribution p(5), pro-
vided that we properly control the contribution of the
weakest bonds. In particular, using Eq. (1) we replace
Eq. (3) by

a'~'
g'L, ] p(r) dr/a",E Y0 ~mtn

where 5;„ is the minimum value of 5 for the singly
connected bonds on this string, and x= —,

' for d=2
(x = —', for 1= 3, and Yo is replaced by the 3D
Young's modulus). It may be seen that for large
values of L, , a typical value of 5;„is = So/Lt, where
50 ———1/p (0). {More generally,

1 —
~t p(a)da '=e ' ' '

0

is the probability that 5;„)e.I We see than that
most of the time K is determined by the weakest
singly connected bond on the string; i.e. , that
K —$ 2L& ". If we use this estimate'2 '3 to deter-
mine the shear modulus, via 1V —K(2 ", we find

f= dv+ —', = ft+ —', for d=2, and f= dv+ —,
' = ft

+ —', for d =3.
For the electrical conductivity, we may apply a simi-

lar analysis to estimate the sum in Eq. (2). In d=3,
we again find that the resistance of a string is deter-
mined by the weakest singly connected bond and the
exponent tis v+ —,

' = t&+ —,'. In d=2, however, where
the bond conductance varies less rapidly than linearly
with 6, the sum is not dominated by the weakest link;
rather we have G ' —pLt, where p is the mean resis-
tance of a bond. Thus, we find that t = r in this case.

The difference between the permeability and con-
ductivity exponents arises from the different behaviors
of the bond strengths, for small 5;. In three dimen-
sions, the flow of a viscous fluid through a narrow
channel like that in Fig. 2 is proportional to
5~4/it = 5; 2/at 2, while in a two-dimensional version of
the model, the flow varies as 5; '/a' . Thus, we esti-
mate the permeability exponent as e = v+ —', = tt+ —',

for d = 3, and e = —,
' = t&+ —', for d = 2.

Roberts and Schwartz7 have studied numerically the
electrical conductivity (and recently the permeability)
of a porous rock, using a model similar to ours, except
that the centers of their interpenetrating insulating
spheres were chosen originally from a Bernal distribu-
tion, rather than completely at random. We would not
expect this additional short-range correlation to affect

TABLE I. Estimates of the differences between the trans-
port percolation exponents in the Swiss-cheese continuum
model and the corresponding exponents on a discrete lattice.
(See text for definitions. )

Conductivity
(r r)—Elasticity

(y —/)
Permeability

(e —r)

0
I

3
2
5
2

3

5

the critical exponents. As noted by Roberts and
Schwartz, however, the volume fraction of conductor
in these models is very small ( = 3%) at the percola-
tion threshold, and we expect that the critical ex-
ponent may be observable only for q very close to q, .
Roberts and Schwartz do not investigate this, but
study instead a wide range of conducting-volume frac-
tions above percolation. We note that the analysis of
Roberts and Schwartz involved mapping onto a
discrete network, similar to ours, with bond strengths
determined by the cross-sectional area of the necks.

Wong, Koplik, and Tomanic' have studied a net-
work of conducting pipes, in which all bonds on a reg-
ular network are present, but there is a wide distribu-
tion of pipe radii. The exponents of their model
depend on parameters in the distribution, but they find
typically a permeability exponent about twice the con-
ductivity exponent, which is not far from our finding.

It must be emphasized, however, that other types of
continuum models can lead to results which are very
different from the ones that we have found. For ex-
ample, if the conducting elements in a Swiss-cheese
model are taken to be the interpenetrating spheres,
rather than the space between the spheres, the conduc-
tivity exponent t will be the same as the lattice ex-
ponent t in 1= 3 as well as d = 2, and the permeability
exponent e would be approximately t+ —,

' in 1=3.
According to our theoretical analysis, the two-dimen-
sional system'constructed by Smith and Lobb, 's using
a laser speckle pattern, should also have t = r, as would
a hypothetical d = 3 generalization. The elastic model
studied by Benguigui, " with circular holes at randomly
selected sites of a regular lattice, has no narrow necks,
and is expected to have the same exponents as a lattice
elastic model. The differences among these various
continuum models arise from the differences in the
probability distribution and geometry of the narrowest
channels, and all can be analyzed by the methods of
the present Letter.

We remark, in closing, that the exponents derived in
the text, by considering only the singly connected
bonds on the strings (links) of the percolating back-
bone are presumably lower bounds to the true ex-
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ponents of the various models. On the other hand, if
the exponents t and f in Table I are defined as the ex-
act lattice values, ' then the exponent differences
(t —t), (f f)—, and (e —t) listed in the table turn
out to be upper bounds for the Swiss-cheese continuum
model. These bounds can be established by an exten-
sion of the "variational method" employed in Ref. 8.

The authors are grateful for very helpful discussions
with L. M. Schwartz, C. J. Lobb, and Y. Kantor. Work
at Harvard was supported in part by the National Sci-
ence Foundation under Grant No. DMR 82-07431 and
through the Harvard Materials Research Laboratory.

See, for example, S. Feng, P. N. Sen, B. I. Halperin, and
C. J. Lobb, Phys. Rev. B 30, 5386 (1984), and references
therein. Numerical values of discrete lattice exponents de-
fined in the text are the following: for d = 2, t~ —1, t = 1.3,
and f= f~ = 3.7; for d = 3, t~ = t = 1.9 and f= f~ = 3.6.

2Y. Kantor and I. Webman, Phys. Rev. Lett. 52, 1891
(1984); Y. Kantor, J. Phys. A 17, L843 (1984).

3D. J. Bergman, Phys. Rev. B 31, 1696 (1985).
4L. Benguigui, Phys. Rev. Lett. 53, 2028 (1984).
5W. T. Elam, A. R. Kerstein, and J. J. Rehr, Phys. Rev.

Lett. 52, 1516 (1984).

6E. T. Gwalinski and H. E. Stanley, J. Phys. A 14, L291
(1981).

7J. N. Roberts and L. M. Schwartz, Phys. Rev. B 31, 5990
(1985), and private communications.

sP. M. Kogut and J. P. Straley, J. Phys. C 12, 2151 (1979).
A. Ben-Mizrahi and D. J. Bergman, J. Phys. C 14, 909

(1981).
toA. Coniglio, Phys. Rev. Lett. 46, 250 (1981);R. Pike and

H. E. Stanley, J. Phys. A 14, L169 (1981).
~See, for example, R. V. Southwell, An Introduction to the

Theory ofElasticity (Dover, New York, 1969), Chap. VI.
2More detailed arguments will be given elsewhere.
3More precisely, we should define the representative

value of G as the value G, such that a fraction p, of the
strings have 6 & G„where p, in turn is the fraction of
strings that can be randomly cut before the backbone ceases
to conduct. Strings with 6 « G, or G » 6, cannot affect
the conductivity of the multiply connected backbone, follow-
ing V. Ambegaokar, B. I. Halperin, and J. S. Langer, Phys.
Rev. B 4, 2612 (1971). If p, were equal to ~, then G, would

be the median of 6; other estimates for p, change G, some-
what, but do not change the exponent t. We choose K, simi-
larly.

~4P. Z. Wong, J. Koplik, and J. Tomanic, Phys. Rev. B 30,
6606 (1984).

»L. N. Smith and C. J. Lobb, Phys. Rev. B 20, 3653
(1979).

2394


