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Finite-Size Studies of the Incompressible State of the Fractionally Quantized
Hall Effect and its Excitations
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The incompressible states of interacting two-dimensional electrons in a high magnetic field has
been studied by finite-size calculations in the spherical geometry. The excitation spectrum at T
Landau-level filling is described, and the Laughlin-Jastrow character of the Coulomb-interaction
ground state is unambiguously confirmed. As the interaction is varied, a transition to a gapless
compressible state is observed.
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The observation' in two-dimensional electron sys-
tems at high magnetic fields of quantization of the Hall
conductance o.~= ve2/h with fractional values of v has
emphasized the collective origin of the quantized Hall
effect (QHE), which may generally be associated with
incompressibility of the electronic state. While in-
compressibility is a simple consequence of the Pauli
principle in the case of integral Landau-level fillings,
its existence at various fractional fillings (implied by
the observations of a QHE) must be a result of repul-
sive interactions between the electrons.

This Letter reports a study of the interacting two-
dimensional electron fluid at Landau-level filling v = —,

by numerical diagonalization of systems of up to eight
particles in spherical geometry. 2 A detailed picture of
the incompressible state responsible for the v = —,

'

QHE, plus its collective excitation and fractionally
charged defects, has been obtained. Our calculations
directly test the Jastrow-function model of the ground
state introduced by Laughlin. 3 We believe that we
have definttively confirmed its validity for the
Coulomb interaction at v = —,', and established that the
incompressibility giving rise to the fractional QHE is a
consequence of a strong short range component -of the
interaction potential.

The spherical geometry is particularly suited to the
study of homogeneous fluid states in finite systems: It
is the only geometry in which fully translationally and
rotationally invariant states with finite particle number
N occur. Periodic boundary conditions are more ap-
propriate for the study of lattice states.

Cyclotron motion of a charged particle moving on a
sphere of radius R in a radial magnetic field B is for-
mally equivalent to precession of a symmetric top with
quantized internal angular momentum tS, where the
total flux 4=4mR2B is an integral number 2S of flux
quanta 4O= h/e. Interacting particles in a partially
filled Landau level with index n become formally
equivalent to a partially filled nuclear shell with orbital

angular momentum l = S+ n. Within a level, the in-
teraction is fully characterized2 by a set of pseudopoten
tial coefficients V, the energies of a pair of particles
with relative angular momentum m, i.e., total angular
momentum 2l —m. (The set {V )—and the underly-
ing physics —is very different from that of the nuclear
problem. ) We discuss only the lowest Landau level
(l = S) with full spin polarization so that only V with
odd m couple the particles.

On the sphere, the antisymmetric, rotationally in-
variant Laughlin-Jastrow (LJ) wave function for the
incompressible state at v = 1/m, m odd, is

+L'= j j (uter —v, uj),
i&)

where

(u, ~) = (cos—,
' e e'~t', sin —,

' e e '@t2)

are spinor variables describing particle coordinates. As
a function of (u, , ut), wave functions are polynomials
of degree 2S: WLJ occurs at flux 2S= m(N —1). Its
surface density is uniform, given by (27rml2) ' (i.e. ,
v = 1/m) in the limit N ~, where from now on l is
the "magnetic length" (tt/eB) t . The radius R of the
sphere is l WS.

We numerically diagonalized the N-particle Hamil-
tonian parametrized by I V ), deriving these from the
pure Coulomb potential e /4n. er, taking the geometric
(chord) distance as the interparticle separation. Ener-
gies are quoted in units e /4m&i.

The exact ground state at flux 2S = 3 (N —1)
(v = —,

' ) was, as expected, an isotropic state with total
angular momentum L = 0, well separated from excited
states at the same (N, S) by a gap. As an example, Fig.
1 shows the full spectrum with N = 7, S= 9, consisting
of 1656 multiplets with L ranging from 0 to 42. Figure
2(a) shows the ground-state energy per particle for
various N. The contribution from a neutralizing sur-
face charge —Ne has been included. Extrapolation to
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FIG. 1. The spectrum of 1656 multiplets (50388 states)
of the N = 7 electron, 2S = 18 flux quanta system with
Coulomb interactions, grouped by total angular momentum
L. Energies (in units of e /4mel) are shown relative to the
incompressible (v = T ) isotropic (L = 0) ground state.
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FIG 2 (a) Ground-state energy per particle with a neu

tralizing background. The energy of classical point charges
is a lower bound. (b) Creation energy Eo+ + Eo —2EO for a
quasihole plus quasiparticle pair at infinite separation. Filled
circles and legend: sequence with condensate neutralization
only, energies compared at fixed field. Crosses: same, but
energies compared at fixed surface area. Open circles: full
neutralization, fixed field; this sequence will have a I/JN
dependence.

infinite N gives an energy —0.415 +0.005 per particle,
in line with results from the plasma formulation and
the periodic geometry. 4 The difference between the
exact value (e.g. , —0.450172 at N= 6) and the varia-
tional energy of the LJ state ( —0.449 954 at N= 6) is
not visible on the scale of Fig. 2 (a).

The ground-state pair correlation for N = 6 is com-
pared with that of the LJ state in curve a of Fig. 3.
They are extremely similar, the LJ state's projection
on the ground state being over 99'/0. At short dis-
tances, the LJ state correlation vanishes as r; since on
the sphere2 this is the only state in the Hilbert space
with no r component, a weak r component due to
admixture of other states is found in the exact ground
state (Fig. 3 inset). This has also been seen in periodic
geometry. 4

Dilation or contraction of the "incompressible" LJ
state by variation of the magnetic field at fixed surface
area produces fractionally charged defects. Localiza-
tion of this charge in the interior of the system far
from edges requires an integral flux change, and the
sphere has no edges. The elementary defects corre-
spond to S S+ —,

' at fixed N. The LJ defect wave
functions3 on the sphere are2

+ + = Ij,. (r)/rim, )e", + —= j J,.u, e ".
These have total angular momentum L = —,

'
N, and az-

imuthal angular momentum M= +L; both defects
are localized at 8=0. Their charge q= +e/m is
directly identified by the angular momentum quantum
number I, : A localized charge q in a radial magnetic
field emitting flux 4 has intrinsic radial angular mo-
menturn q4/4vr This give. s q/e = limz [ + L/
S] = + 1/m, the limit being required as the defect is an
extended object.

The actual ground state at 2S = 3(N —1) + 1 is

indeed an isolated multiplet with L = —,N [Fig. 4(a)].
Charge-density profiles of the defects as a function of
(chord) distance from their centers are shown in Fig.
3, curves b and c. The exact and the LJ-state results
are again extremely similar. The model "quasihole"
(q = ——, e) defect has vanishing density at its center,
and is the only state in the Hilbert space with this
property. Weak admixture of other states leads to a
small nonvanishing density at the center of the exact
defect.

The fractional charge is visible in Fig. 3: Creation of
a defect at fixed total charge means that the charge of
the background LJ condensate must be depleted or
augmented by —, e. The asymptotic charge densities in
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FIG. 3. (a) Ground-state pair correlation function for
v = 7, N =6. (b), (c) Density profiles of' localized quasipar-
ticle and quasihole defects. The condensate density p satis-
fies 4mR p=6, 5T, and 6T, respectively. Filled curves,
Coulomb interaction; broken curves, model Laughlin-
Jastrow wave functions.
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FIG. 4. Details from low-lying excitation spectra. (a)
N=6, 2S=16 (v= I+one quasihole). (b) N=6, 2S=17
(v= 7+two quasiholes). (c) N=6, 2S=19 (v= —, , or
v = I+four quasiholes). (d) N=7, 2S=16 (v=

3 +two
quasiparticles) .

Fig. 3 do appear to satisfy 4mB p = = N + 3

We estimate the gap b, + + b, for the creation of a
pair of defects at infinite separation as 0.105 0.005
[Fig. 2 (b) ]—a factor of 2 larger than the plasma
result (shown as L). Various forms of the combina-
tion Eo+ +ED —2Eo of defect and pure state ground-
state energies should converge to the gap as N
To avoid I/JN corrections, we include a neutralizing
charge —(N + ,' ) e for the LJ—condensate but not the de

fectin calculating Eo+ and Eo .
There are three proposed descriptions of the defect

statistics: Bose, 2 Fermi, s and fractional. 6 7 These
schemes are not in contradiction; each is internally
consistent, and leads to the same hierarchy of ra-
tional quantizations of the Hall effect. We view the
Bose scheme2 as the simplest description of defects
produced at fixed fermion number N; in this picture,
defects experience electron density as electrons experi-
ence magnetic-flux density.

The low-lying spectrum at N = 6, 2S = 17 (two
quasihole defects) is shown in Fig. 4(b). The two-
defect states have L = N, N —2, N —4, . . . , con-
sistent with defects being identical particles. In the
Bose scheme, these are the symmetric combination of
two L = —,

' Ndefects.
The relative energies of the two-defect states with

L = N —m, m = 0, 2, 4, . .., define defect pseudopoten-
tial coefficients V . From Fig. 4(b), it can be seen
that the repulsive contact interaction Vo is dominant.
Figure 4(c) is in our view confirmation of the hierar-
chy picture2 s 6: It shows the low-lying states of a
four-hole system, corresponding to the v = —,'state, an
m =2 Bose LJ state of quasihole defects of the v = —,

'

fundamental state. The content of the low-lying group
of eighteen multiplets, well separated from higher lev-

FIG. 5. Low-lying excitations at v = 3, N = 4, 5, 6, 7, and

8, showing the collective "quasiexciton" dispersion. The
full line and shading indicating the continuum are a guide to
the eye.

els, is as expected for four Bose L = —,'N particles.
This group, with a singlet ground state well below the
others, resembles a miniature replica of the v = —,

' level
pattern of Fig. 1. The low-lying states of Fig. 4(d) are
two-quasiparticle states. Again, statistics and domi-
nance of the contact repulsion are seen.

Figure 5 shows the low-lying excitation spectrum at
v = —,'. Neutral-particle wave functions on the sphere
are spherical harmonics, with effective wave number
k = L/R. A collective mode is seen clearly; the excita-
tion gap is minimum ( = 0.075) at kl = 1.4. The exci-
tation occurs with L = 2, 3, ...,N. We identify the
large-L (large-k) limit as a well-separated quasi-
particle-plus-quasihole pair at mean square (chord)
separation given by angular momentum algebra at
large N as 2RL/N = kl2/v. We believe that the small-
L (small-k) limit derives from the excitation of a pair
of particles from an m =3 to an m = 1 state of relative
motion, requiring that AL ~ 2. At large k, the excita-
tion energy of the "quasiexciton" must tend to
b, + +5; Fig. 5 is consistent with this.

Also shown (K) in Fig. 5 is the estimate of
6+ + 5 from low-temperature resistivity measure-
ments by Kawaji et al. 8 This estimate is a factor of 3
smaller than our result. Recent numerical calculations
by Yoshioka9 indicate that at most a 20% reduction of
the gap can be attributed to mixing with higher Landau
levels. We suggest an alternative possible explanation
of the discrepancy with the experiments of Ref. 8. A

pure I/r potential assumes that ~Q(z) ~
=5(z), where

Q(z) is the wave function describing binding to the
surface. Substantial further reduction may be due to
spreading of Q (z) into the surrounding dielectric,
which weakens the short-range interaction com-
ponents. We have found that a significant change of
&t begins when the width of Q (z) exceeds 0.1I.

Figure 6 shows the effect of variation of the short-
range component V&, while other pseudopotential
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FIG. 6. Low-lying states at N=6, 2S= 15 (v =
3 ) as the

"hard-core" pseudopotential component Vi is varied. The
other V take their Coulomb values. V3 and the Coulomb
value (C) of Vt are marked. Angular momentum quantum
numbers L are indicated. Also shown is the projection of
the LJ state on the ground state. In the gapless regime
(X & 1.25), the LJ state reappears as the hightest L = 0 level.

coefficients are kept at their Coulomb values. A non-
variational explanation of the success of the LJ wave
function follows directly from the observation first
made in Ref. 2, that it is the exact ground state of a
truncated "hard-core" pseudopotential V "', where
V"; = V, )0 for m' & m and 0 otherwise. Though a

formal proof has not yet been found, at v= 1/m the
gap that separates the LJ ground state of V"' on the
sphere from all excited states remains finite as
N ~. This guarantees the LJ character of the
ground state of the potential V"'+ A. ( V —V"') at small
but finite X. This stability is equivalent to that of the
g = 1 incompressible state against weak interactions
that mix in higher Landau levels.

Figure 6 shows that for the Coulomb potential at
v = —, , the stability limit is A. , = 1.25, where there is a

first-order transition to a gapless state which we find is
compressible (b, + + b, 0 as N ~). We conjec-
ture this to be the lattice state, though this is difficult
to test on the sphere.

While ground-state properties in the incompressible
regime are extremely insensitive to the lowering of Vi
(the LJ state is the only state with this property), exci-
tation energies are very sensitive, which suggests that a
quantitative comparison to experiment requires realis-
tic modeling of the wave function Q(z) describing
binding of electrons to the interface.
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