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Orientational Order in Liquids. ' A Possible Scenario of Freezing
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A new model of liquid-solid freezing, based on the orientational order in a three-dimensional
liquid, is proposed. The novel aspect of the model is the inclusion of the coupling between the
orientational and elastic degrees of freedom in a dense liquid. This allows for the explicit computa-
tion of several thermodynamic quantities of interest near the freezing transition.
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One of the most challenging problems in contem-
porary statistical physics is the freezing transition in a
three-dimensional classical liquid. Despite the accu-
mulation of considerable experimental and computer
simulation data' 3 the theoretical description of freez-
ing remains unsatisfactory. Almost all equilibrium
statistical-mechanical theories of freezing at the molec-
ular level are de facto extensions of the original ideas
of Kirkwood and Monroe4 and are in disagreement
with experimental and computer-simulation data. s In
this Letter we outline a novel approach to the theory
of freezing. We state only the main results obtained
within a simplified version of our approach which
bears a certain similarity with the compressible three-
state Potts model. Details of the calculations and pos-
sible extensions to deal with dynamics will be reported
elsewhere.

It has been recently argued that the remarkable
properties of dense supercooled liquids and glasses are
dynamical in origin. 6 8 They result from the extreme
sluggishness of single-particle motions —reflected
among other things in the change of the particle dif-
fusion mode from Fickian to hoppinglike. Accom-
panying this is a dramatic increase of the shear viscosi-
ty. In fact, supercooled liquids and glasses exhibit
properties not much different from those of isotropic
elastic media. In a sense a dense cooled liquid "looks
liquid" only when probed at sufficiently low frequen-
cies. The dynamical models of dense liquids, super-
cooled liquids, and glasses rely on the concept of a lo-
cal "cage" felt by a single particle. A picture like this
had been invoked in the early days of neutron scatter-
ing from liquids wherein the experimental data had
been interpreted on the basis of a local quasicrystalline
model of liquids. 9 A similar concept seems to be in
agreement with computer-simulation data also. ' At
the equilibrium level the cage effect manifests itself in
the existence of local orientational order in liquids
which is not only long lived but is spatially long ranged
as well, at temperatures not far above Tf. The idea of
the local orientational order in liquids is not new. It is
implicit in the Frenkel model" of the liquid state and

has been employed recently in various guises by
Hess, ' Mitus and Patashinskii, ' and Haymet. '

The local orientational order cannot be easily de-
scribed by the conventional liquid-state theory, i.e. ,
the one involving one- and two-particle distribution
functions. The difficulty is that the local order has just
a minor influence on the pair-correlation function and,
hence, on the static structure factor. Experimentally,
the pair-correlation function shows only smooth
changes, e.g. , a splitting of the second peak and no
dramatic divergences near TJ as predicted, for in-
stance, in the theory of Schneider et al. "s In fact, the
information about the local orientational order and the
incipient lattice structure are embodied in higher-order
distribution functions; one needs at least four-particle
distribution functions to describe cubic symmetries.
Structures other than cubic require even higher-order
correlation functions. The fact that four-particle func-
tions do not simply factor into two-particle functions,
as assumed in the Kirkwood-type theories, is already
suggested in the computer studies of the three-particle
correlation function. In general, therefore, one needs
to build a molecular theory on the four-particle distri-
bution function p4 and that can be done if we assume
the free energy F to be a functional of p4. For dense
cold liquids in which the local cage concept is applica-
ble, p4(r&, . . . , rq) can actually be related to the proba-
bility of having, at an arbitrary point r, a local triad of
vectors h, (i =1,2, 3). These vectors define the local
coordinates in a liquid according to the orientational
order; one can construct them, for example, with the
aid of local Wigner-Seitz cells. Thus, the main object
of the theory is the probability density p(r, (h)). This
description is reminiscent of that of a crystal, with con-
tinuously distributed dislocations, by means of anholo-
nomic local frames. ' ' At this stage our approach has
to rely on assumptions common to all other local-order
theories of liquids, viz. that the free energy F can be
written as a quadratic functional of p. Thus, expand-
ing p(r, (h) ) into properly chosen spherical harmonics
(irreducible tensors of rank four'z '3 or the Wiger rota-
tion matrices' ) one obtains

F(A) = —,
' V 2)1 d3R, d3R2E„tt(Rt, R2)A" (Rt)As(R2), (1)

where A (R;) stands for properly chosen variables describing the local order at the point R;, and Vis the volume
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of the system. Here and elsewhere the summation
convention is used.

From this point onward, however, our analysis
departs from the existing ones. We assume now not
only that the fields A~ describe the instantaneous
orientational order but that they are also coupled to
the remaining degrees of freedom of the liquid. When
the latter evolve, the adjacent cages move slightly
apart but they preserve their identity, in view of the
assumed time-scale separation. Therefore, the cou-
pling between the neighboring A becomes a function

of R; —RJ= (R(~ —Rjo)+uI(RJ) —u (R ), where u,
describes the instantaneous displacement of the cage
from its averaged position. A complete description of
the liquid may then be given by adding to (1) the free
energy of the remaining degrees of freedom Fo{u)
which we describe by means of the displacement field
u. The coupling between the orientational and transla-
tional degrees of freedom in a similar context was dis-
cussed in Ref. 18 but in a very different way. Now,
expanding E&z around the averaged cage positions R;,
we obtain a field theoretic model with the Hamiltonian
F= F{A,u) given as

F=
2 V d Rt d R2E~~(Rt —R2)A" (Rt)A (R2)

+ V „dRt d R2G&g(Rt —R2)V up(Rt)A"(Rt)A (Rz)+Fo{u). (2)

The coupling between the orientational order and elas-
tic degrees of freedom is therefore linear in the distor-
tion tensor V u&=e &+re &, e & being the elastic
strain tensor and co p= ('7 up —Vpu )/2 the elastic
rotation tensor. The latter is related, in lattice elastici-
ty, to the density of dislocations. The role of the cu-A

coupling becomes important in the theory of melting.
It should be noted that Eq. (2) describes the most gen-
eral coupling between the distortion and the internal
stresses due to orientational order allowed in linear
elasticity. Since it is that coupling and not the mode-
mode-like one between the elastic deformation modes
which is pertinent near freezing, neglecting cu we can
write I'0 as in conventional elasticity theory:

+o = +.i
= —,

' C, , V-'J d'Z, "P(R,)"P (R,). (3)

Here C, , stands for the "bare" elastic coefficients
of the system, the measurable ones being renormal-
ized by the coupling between the fields A and e. The
Hamiltonian having been specified by (2) and (3) the
thermodynamic properties of the system can be
evaluated from the partition function

Z =„DA De exp( —PF), (4)

where the integration is carried out over the entire
functional space of orientational and elastic degrees of
freedom, and P = (k&T)

A complete analysis of the functional integral in (4)
is beyond reach and one has to resort to approxima-
tions, the simplest being the mean-field theory.
Within the mean-field approach the "rigid" part of the
Hamiltonian [given by the first term on the right of

(2)] is known to lead to a first-order phase transition
with the averaged value (A) undergoing a jump at Tf,
interpreted here as the freezing temperature. The in-
clusion of elastic degrees of freedom is expected to
enhance the first-order transition as in compressible
Ising models. '

The connection between freezing and the oc-
currence of finite orientational order can be interpret-
ed in the following way. The local cage concept in
dense liquids makes sense when the adjacent cages are
on the average separated by a distance R;~0 which is al-
ready compatible with the lattice constant of the incip-
ient crystal. This fact is reflected in the moderate in-
crease in the value of the first maximum in the radial
correlation function near freezing. Thus it is the local
misfit of A which distinguishes a liquid and a solid on
either side of Tf. The jumps in (A) and the A-A
correlation at Tj result in changes at Tf of several im-
portant macroscopic quantities. They are (i) the
volume, (ii) the specific heat, and (iii) the elastic com-
pliance. 2O We outline below the results for the quanti-
ties (i), (ii), and (iii).

The linear coupling between e p and A"A allows us
to carry out the integral over the elastic degrees of
freedom exactly. As a result the mean value of the de-
formation (e p) turns out to be

(e p(R, ))

= V 'J" d'&2~ p„gG~~(A"(Rt)Ap(R, )), (5)

where S is the elastic compliance tensor (inverse of
C). From (5) we may write a general expression for
the volume change at freezing as

5 V/V= V 'TrJI d A, ((e p(R&))+ —(e p(R&)) )

= V Tr d Rt d RqS p~qGJ&[(A"(R&)A (R2))+ —(A"(Rt)A (R2)) ], (6)

where (. . .) + denote the values of the bracketed quantities above and below the transition, respectively. Similar
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general formulas can be written down for the specific
heat and the elastic compliance.

The explicit evaluation of quantities as in (6) re-
quires specification of the rigid part of the Hamiltonian
for the A variables. We choose, for the sake of simpli-
city and for the purpose of this presentation, a model
analogous to the three-state Potts model. This as-
sumption allows us to carry out all the calculations ex-
plicitly and does not miss, we believe, any essential
feature of the problem. Indeed, the shape of the free
energy for the three-state Potts model, within the
mean-field approximation, 2p is qualitatively the same
as that calculated numerically for the continuous
model by Haymet, '4 or for the four-state model by
Mitus and Patashinskii. '3

The local orientation of the cage, in our model, is
then represented by a triad constituted of three vectors
h; rigidly "welded" together at a mutual angle m/2. In
addition, the triad is viewed to have only three discrete
orientations, obtainable from one another by the inter-
change of any two of the three vectors h;. Each of
these orientations has an occupational probability
(A") where A" (A = 1, 2, 3) can be represented by a
3 x 3 matrix with the "projection" property A A
= A"5"~ (no sum on A). Since we have assumed cu-
bic symmetry here, the coupling constants Eqz depend
only on the relative orientation of the triads, leaving
us with just two independent constants E~ and E cor-
responding to whether the triads are mutually perpen-
dicular or parallel.

In the liquid (disordered) phase (A") = n" simply
equals —,'. On the other hand, the ordered phase is
most conveniently characterized by an order parameter
zp related to n" via zp= 1 —3n = —,

' (3n~ —1), where
II and i denote directions in the triad space. 2p Setting
fz =Ezzn and gz~= G&PS p„t;Ggzn n, we write the

transcendental equation for n4 as

3
—1

n~=expP(f~ +g~w ) X expP(fc+gcc)

The analysis of this equation is standard leading to the
solution n"= —, VA for T & Tf and predicting a jump
at T& in the value of zp (zp = 0 for T & T&). At each T
below Tf we can solve for zp from (7) and that allows
us to derive a closed-form expression for the volume
change. Within the mean-field approach the correla-
tion function (A"A+) in the integrand of (6) can be
replaced by ( n4 ——,

' ) ( n —,
' —), and hence

s ~ ~ a= S t, Gg~(n ——, ) (n ——,)

= —,
' zp2S „gb, G'rP = zp K, (8)

where AGrp is the difference in the values of the
coupling constant G [see (2)] for parallel and perpen-
dicular arrangements of triads.

Note the correct dependence of 5 V in (8) on the
square of the order parameter zp and on the bare longi-
tudinal compliance S, i.e., on the bare bulk modulus of
the liquid. 22 Since the restriction to the three-level
model has been imposed more as a mathematical sim-
plicity than a physical necessity we expect the formula
(8) to hold generally, with, of course, different values
of the coefficient K

Next, we calculate the change in the specific heat at
the freezing transition:

b, C= (b, C), „,h —K)zpOzp/OT,
'

where Kq depends on AE, 6 G, and E.
Finally, we turn to the question of the effective elas-

tic coefficients. The quantity of interest is the elastic
compliance tensor S which measures the response to a
small stress and is given by

S ~r'= V '
' O'Rg O' R, {(e t'(R, )e&'(R,)) —(e t'(R, )) (e&'(R,))).

aS»' —K»'z,'(1 — T/T~) -', (12)

where n is a numerical factor (o. ( 1). In the three-
state Potts model2' a turns out to be 0.92. The formu-

The mean-field analysis enables us to express the
strain correlation in terms of the A-A correlation
C(Rt —R2) itself, which, upon integration over Rt
and R2, yields the zero-"wave-vector" Fourier com-
ponent C(q=0). Thus, we find that the change of
the elastic compliance due to the finite orientational
order reads

aS.»'= K»'z,'C(q= 0), (11)
where K»p depends on the bare compliance S and
the coupling constant G. We may now evaluate C(q)
within the Ornstein-Zernike —type approximation, lead-
ing to (for T & T&)

la (12) is particularly interesting; it shows how the
presence of long-range orientational order enhances
the longitudinal and shear moduli of the system as the
freezing point is approached. A similar phenomenon
has been observed in d = 2 computer simulations
with a scenario of orientational order somewhat dif-
ferent from ours (O= 3).

We conclude, therefore, that our model allows for a
systematic calculation of various thermodynamic quan-
tities at freezing. Our interpretation of the coupling
between the elastic and orientational degrees of free-
dom appears distinct from that of Ref. 13 and Ref. 18;
it enables us to make a direct contact with the
phenomenological treatment of Ref. 12. We stress
once more that the three-state approximation we have
used is, in fact, inessential. Similar results can be ob-
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tained for higher-state models without gaining any ad-
ditional physical insight.

There are several possible extensions of our model,
barring the ones mentioned above. The most impor-
tant of these is the analysis of dynamics of orientation-
al order. Following ideas outlined in Ref. 20 we can
introduce "orientational flips" in much the same
manner as "spin flips" in the Glauber version of the
kinetic Ising model. This has to be done, of course,
together with the dynamics of elastic degrees of free-
dom. The completion of that program would lead au-
tomatically to the calculation of the dynamic structure
factor S(q, co) for long wavelength and low frequen-
cies. At the freezing transition, S(q, to) reveals a nar-
row peak which exhibits "critical slowing down, " i.e.,
the power-law character of the peak width. Similar
behavior of the central peak at freezing is expected in
view of the molecular-level6 s and purely hydrodynam-
ical arguments. Work along this line is in progress.
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