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Nonuniversal Jumps and the Kosterlitz-Thouless Transition
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A new set of renormalization equations for the two-dimensional Coulomb gas is derived. Within
this new description, the prediction of a universal jump or the prediction that the exponent q is 4

at the critical line breaks down below a certain temperature. Consequently it should be possible to
have a Kosterlitz-Thouless transition without a universal jump. A realization is suggested.

PACS numbers: 64.60.Cn, 67.70.+n, 74.40.+k, 75.40.Dy

A new set of renormalization equations for the
Kosterlitz-Thouless transition'2 of a two-dimensional
(2D) Coulomb gas is presented. In the present paper I
give the main line of arguments, results, and some
consequences. A full account with detailed derivations
will be given elsewhere. 3

The Kosterlitz-Thouless transition is of recent in-
terest in many contexts. 4 Some obvious implications
of the present work are to XY models and to
superfluid- and superconducting films. One striking
manifestation of the Kosterlitz-Thouless transition for
these cases is the universal jumps of the helicity
modulus6 or equivalently of the superfluid density. 5 7

A consequence of my new equations is that it is possi-
ble to have a Kosterlitz-Thouless transition without a
universal jump. I suggest that this may be the case for
some of the frustrated XYmodels.

The model under consideration is the 2D Coulomb
gas8; it consists of particles with charge s = +1 in-
teracting through a Coulomb interaction. In two
dimensions this interaction is logarithmic. The model
is defined through the grand partition function (modu-
lo precise cutoff prescriptions)

oo ~ dr.
2

i exp
a

where N is the number of particles in a neutral config-
uration, i and j numerate the particles, rj is the dis-
tance between particles i and j, a is the linear dimen-
sion of a particle, z is the particle fugacity, and Tis the
temperature. We address the problem of describing
the Kosterlitz-Thouless transition with T and z as vari-
ables.

The thermodynamic averages for the Coloumb-gas
model may be mathematically transformed into a Eu-
clidean sine-Gordon field-theory formulation. An
average in the sine-Gordon formulation has the fol-
lowing appearance:

J d$exp[ —
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with the sine-Gordon Hamiltonian density given by
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Note that this is a natural approximation without any
obvious limitation. It also turns out to have an appeal-
ing physical interpretation.

In order to get to the physics of Eq. (3) we translate
it back to the Coulomb-gas language. It then reads'

2z 1(n(r)n(0)) = — exp —[ V(0) —V(r)] . (4)
a4

Here n (r) is the charge density, the brackets stand for
thermodynamic averages in the grand canonical en-
semble, and V(r) is the linearly screened potential.
The transformation from Eq. (3) to Eq. (4) is valid as
long as the screening length in the Coulomb gas is in-
finite, i.e., in the low-temperature phase. The linear-
ly screened potential is related to the charge-density
correlations. This relation may be expressed in terms
of Fourier transforms and a dielectric function as

V(k) = 2m./k2e(k), (5a)

e(k)
=1—(2m/Tk ) (n(k) n( —k)).

The dielectric constant ep—= limk pe(k) will play an
important role. Note that Eqs. (4) and (5) are self-
consistent equations for the charge correlations. This
is the key of the present approach.

In order to extract the physics and make contact
with earlier work and renormalization-group (RG)
equations we introduce a logarithmic length scale
i = ln(r/a) and a length-dependent dielectric function'

and @(r) is a real field.
The basis for the present treatment is very straight-

forward in the sine-Gordon formulation. It is simply
the first term in a systematic cumulant expansion,
namely,

Re (exp [ i (2m. / T) ' [@( r ) —@(0) ] ] )
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e ( l) where (from now on we set a = 1)
77'—= 1+ „dl'( r'( n (r') n (0) ) ) .

e(l)
(6)

One notes that e(~) =co. After some algebra Eqs.
(4) and (5) may be expressed in differential form3:

d 1

dl Tq(l)
2z'( l) m'

T2
(7a)

z(l—)d
dl

4 —
I dx

T~(l+ —,
' x)

(7b)

F= Fi+ F2+ F3,

Ft(ro) = I/ro~(ro).

(8a)

(8b)

with the boundary conditions e(0) = 1 and z(0) = z;
z(l) may be thought of as a "renormalized" fugacity.
Integrating the equations from l=0 to ~ gives ep.
From this one gets the position of the critical line in
the (T,z) plane and the critical properties of ep as the
critical line is approached. Equations (7) bear a strong
resemblance to Kosterlitz renormalization-group equa-
tions. 'p However, there is a structural difference:
Equations (7) contain an integrodifferential equation
whereas the renormalization-group equations are dif-
ferential equations. This structural difference turns
out to carry new implications for the renormalization-
group flow diagram.

We now come to the physical interpretation of the
difference between Kosterlitz RG equations'o and Eqs.
(7). Imagine that a test dipole pair is introduced into
the Coulomb gas. Equations (7) then correspond to
the following force, F, acting between the test-pair par-
ticle s3:

ignored, i.e. , if F is set equal to Ft, then Eqs. (7)
reduce to Kosterlitz RG equations. s " Thus from this
viewpoint Eqs. (7) contain more of the physics than do
Kosterlitz RG equations. They may be viewed as the
length-dependent screening reasoning'" carried one
step further.

I have deduced the properties of Eqs. (7) by numer-
ical integration. 3 Figure 1 shows the position of the
critical line in the (T,z) plane (solid line). For com-
parison, I have also plotted the result from Kosterlitz
RG equations'o (dashed line) and the next order
renormalization-group correction'2 to this (dotted
line). In this comparison Eqs. (7) come out as a
respectable approximation; they correct the lowest-
order RG equations in the right direction with respect
to the next order RG equations. In this comparison it
must be kept in mind that the second-order RG equa-
tions are by construction only valid close to T=

4 and
z=0, '2 the Kosterlitz equations are valid close to
z = 0, whereas the limitations of Eqs. (7) are less obvi-
OUS.

The critical line obtained from Eqs. (7) has a nonan-
alytic behavior at a temperature T' (T'=0.1436, see
Fig. 1). This nonanalyticity is more obvious in Fig. 2
where I have plotted e, ( —= the value of ep at the criti-
cal line) as a function of T, (=— the temperature on
the critical line). As T" is approached from below, e,
behaves as e, ( T, ) = 1/4 T' —const( T" T, ) tl2. Abov—e
T' the value on the critical line is given by e, = 1/4T,
which is the well-known result from RG analysis. 'o'2
As the critical line is approached from the left for con-
stant z, 6p behaves as 6p=6& 3+(T&)[+(T,—T)]'
both above (+) and below ( —) the temperature T".
The coefficients 3 + are logarithmically divergent as
T, approaches T' from above (below).

The RG trajectories are trajectories with constant

p OO

F2(rp) = (rpm /T) ' dr'(n(r')n(0)), (8c)

F,(r )o
P OO= (2m /T) ro dr'r'ln(r'/rp) (n (r') n (0)), (8d)

where ro is the distance between the test particles. Fi
may be interpreted as the force due to the electric field
between the test particles screened by Coulomb-gas di-
pole pairs with separation less than ro.'" F2 may be
interpreted as arising from the dipole field from the
test pair screened by Coulomb-gas dipole pairs with
separation larger than rp while F3 arises from the
orientational energy of the test pair in the electric field
due to Coulomb-gas dipoles with separation larger than

3ro.
If the contributions from the Coulomb-gas dipoles

with separation larger than the test-pair separation is

O. I

O. l 0.25 I

FIG. 1. Critical line in the ( T, z) plane. Full line, numeri-
cal solution of Eqs. (7); dashed line, the lowest-order RG
equations; dotted line, the two-lowest-order RG equations.
The temperature T is a temperature where the solution of
Eqs. (7) has a nonanalytic behavior.
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FIG. 2. The value of the dielectric constant at the critical
line, e, . The nonanalytic behavior at T' is of the form
e, —1/4T' —( T' T).u'—

FIG. 3. Flow diagram for the RG equations correspond-
ing to Eqs. (7). The full lines are RG trajectories corre-
sponding, from right to left, to 1/Teo=4, 6, 12. The dashed
line between T = 0 and T' is the locus of starting points for
RG trajectories ending on the Taxis.

Teo. The RG flow diagram corresponding to Eqs. (7)
is shown in Fig. 3. The critical trajectory Teo= —,

starts at T" and ends on the Taxis at T = —,'. The criti-
cal line for temperatures lower than T" is the loci of
starting points for the RG trajectories (dashed line in
Fig. 3). Three such trajectories are shown in Fig. 3.

Above the critical line eo is infinite. At the critical
line eo jumps from e, to infinity. The famous univer-
sal jumps is the jump of the quantity I/T, oefrom 4 to
0 at the critical line. The size of the jump, 1/T, e„is
plotted in Fig. 4. Between T, = —„' and T, = T" it has
the universal value 4.s 7 This universal value corre-
sponds to a jump of the helicity modulus y of 2T,/m.

for XY models6 and to a jumP of (2/7r)ka(m /t ) T,
for 2D superfluidss where, e.g. , m is the mass of a He
atom (in the case of He" films) or of a Cooper pair (in
the case of superconducting films). Below T", on the
other hand, 1/T, e, has a nonuniversal value and the
jump becomes nonuniversal. The question whether a
particular system has a universal or nonuniversal jump
at its Kosterlitz-Thouless transition consequently
hinges on precisely what Coulomb-gas temperature the
transition corresponds to.

The critical index q for the spin-spin correlations in
the XY models is related to the charge-density correla-
tions of the Coulomb gas in such a way that
= Teo. to '3 It follows from the present work that if a
particular XYmodel has its Kosterlitz-Thouless transi-
tion at a Coulomb-gas T, larger than T" then q = —,

' at
the critical temperature, whereas if the transition cor-
responds to a Coulomb-gas T, smaller than T' then q
has a nonuniversal value less than —,

' at the critical
temperature.

Into which of these two distinct classes of Koster-
litz-Thouless transitions do various current models
fall? Here is a tentative answer for some models:
Monte Carlo simulations for the usual 2D XY model
are in good agreement with the universal-jump predic-
tion for the helicity modulus. '4'5 The extracted e, is

I 0--

0
0 O. I 0.25

FIG. 4. Size of the jump at the Kosterlitz-Thouless transi-
tion. Between T= 4 and T' the jump of 1/eo at the critical

line has the universal value 4. Below T the size of the
jump is nonuniversal and larger than 4.

around 1.3, '4 corresponding to a Coulomb-gas T,
larger than T'. The superfluid helium films are closely
related to the XYmodel. 6' The experimental results
are in good agreement with the universal-jump predic-
tion' and the extrapolated e, is around 1.3.' Experi-
ments on superconducting films show evidence of a
universal jump'6 and the extracted e, is around 1.65'7
which is consistent with a Coulomb-gas T, larger than
T". On the other hand, Monte Carlo simulations for
some of the frustrated XY models show evidence of a
Coulomb-gas T, smaller than T" and a nonuniversal
jump. ts'9 This is particularly striking for the half-
frustrated XY model on a honeycomb lattice'9; the
transition is expected to be of Kosterlitz-Thouless
type'9 but the jump of the helicity modulus appears to
be around 0.3J, whereas the universal-jump prediction
gives 0.075J (J is the coupling constant of the XY
model). I suggest that this is an example of a nonuni-
versal jump and of an XYmodel with the Coulomb-gas
T, smaller than T'.
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In conclusion, I have presented a new set of re-
normalization-group equations for the 2D Coulomb
gas. This leads to a qualitatively different re-
normalization-group flow diagram. A qualitatively
new feature is that a nonuniversal jump at the
Kosterlitz- Thouless transition becomes possible. I
suggest that the transition for the half-frustrated XI'
model on a honeycomb lattice is of this new
nonuniversal type.
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