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The long-time behavior of the number of photons in a mode of the electromagnetic field is given
in closed form in terms of elementary functions when there is initially one (two-level) atom excited
in the presence of X unexcited identical atoms and M field modes. The radiation trapping which
occurs with only one mode disappears when the number of modes M approaches the total number
of atoms in the continuum mode approximation.

PACS numbers: 32.80.—t 42.65.—k

Dicke' first emphasized the cooperative nature of
the spontaneous emission from a system of identical
atoms where the atoms were at equivalent mode posi-
tions, e.g. , located within a space of linear dimension
small compared to a wavelength. The present paper
has the purpose of presenting an exact solution for the
spontaneous emission of a single atom which is initial-
ly excited in the presence of N —1 initially unexcited
identical atoms, when there are M modes of the elec-
tromagnetic field accessible to the radiation. The solu-
tion is exact in the sense that the long-time behavior
of the average number of photons in a given mode is
given in closed form in terms of elementary functions
under the conditions that the atoms (N» 1) are at
random space positions. Such solutions valid for all
times for N-body quantum systems are invariably in-
teresting in their own right because of their expository
and pedagogic value. The present model is interesting
in that it couples two different quantum systems, N
atoms and Mfield modes. The problem of N two-level
atoms with one initially excited atom emitting spon-
taneously into a single accessible electromagnetic
mode has previously been given exactly, 2 when the
phenomenon of "radiation trapping" 3 4 is clarified; the
atom effectively will not emit its energy as the number
of atoms N becomes very large, and the energy is
trapped in the single atom. Whether this intriguing
phenomenon persists when there are M modes of the
field present with frequencies near the atomic reso-
nance will be a question of focus in this paper.

Recently there have been significant advances in
cold-cavity techniques with Rydberg atomss 7 which
bring a number of previously inacessible theoretical
predictions (see Haroches for a review) within the
purview of the experimentalist. The present paper
gives details of spontaneous emission in the presence
of N )) 1 atoms which is valid for arbitrarily large
atom-field coupling and arbitrary times, and it is now
reasonable to hope that features of this system will
come under experimental scrutiny in the near future.
One example of a prediction is the persistence of
"ringing" of the total photon number even when the
number of modes becomes large, an effect which does

The operators satisfy the commutator relations

[a,at, ] =5 (2)

and

[~(+) ~( —)] 2~z5J'

The A.» are defined as

)t.„f= p, E + (xj )/2,

where p, is the electric (magnetic) dipole moment, and
E + is the (positive) space part of the electromagnetic
field at the position xj of the two-level atom. If H is
written as Ho+ Ht, where Ht =0 for A. , = 0, then the
matrix elements of H can be expressed in a basis of
eigenstates of Ho.

Attention is focused on the situation where the ini-
tial energy corresponds to the presence of zero pho-
tons in the field, and N —1 of the atoms unexcited, so
that there is one unit of energy available to be shared
among the parts of the system. How is this energy
transferred in time? There are N+M states which
span the subspace of interest. The base states, eigen-
states of Ho, can be defined as follows:

(4a)

(one photon is present in mode p, and all atoms are
unexcited); and

Ij&=I —,—
p ~ ~ o p + p ~ ~ ~ p —;0~) (4b)

not occur when one atom radiates into a large number
of modes, when the field buildup is monotonic and
closely exponential.

The mathematical setup of the problem has been
discussed often before. '9 '0 The Hamiltonian for the
problem is given by (t =1)

M N
H= X t0„a„a + 0 X oj+ X. A„pop( )a.„+.H.c.
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JJ
Thus (7) can be written as, with use of Eq. (5),

(8)

(9)

At this point, use will be made of the reasonable as-
sumption that the atoms are at random space positions
xJ, so that

(10)

(11)

This is most easily seen to be appropriate in the case of
free-space modes, when

W

XX„~X' . =/A„A, exp[i(k —k, ) x ].
J J

With this assumption, Eq. (9) takes the form

The difference equation (13) has the solution

(12)

(13)

(one atom, the jth, is excited, all others are unexcited,
and there are no photons in the field). The only ma-
trix elements are

H, = (o)„—A)5, =—2A 5

and

H J
= A. J, H, = 0.

JJ
(A constant 0 has been subtracted from H with no
loss of generality. ) The density operator has the form
(Schrodinger representation)

p(t) = exp(iHt) p(0)exp( —iHt). (6)

Interest attaches to the diagonal matrix elements
p „—= n„(t), the probability that a photon has been
emitted into mode p, at time t, and to p,j, the probabil-
ity that atom jis excited. A calculation of the iLjele-
ment of His alone required. This is

H".= X,H, H" '+ g ,H . ,H", . .
u J PJ JJ

and

since p,~ =5,~6,J, where atom jwas the initially excit-
ed one. Use of Eq. (14) gives

p„(t) = n„(t) =
~ t, ~' sin'r„t/I „'. (18)

For the case that only one mode is accessible to the ra-
diation, Eq. (18) reduces to the expression, in the case
that all atoms are in equivalent mode positions,

n{t) =sin (N' Xt)/N, (g =0 g J
—g) (19)

For N very large, no photons are emitted, and the en-
ergy remains trapped in the jth atom. 2 ~

The total probability that a photon has been emitted
into any mode is the trace over all modes of the ele-
ments p„„,

n«) = g„n„(t)=g„ l&„,~'sin'(r t)/r'
This expression will be examined in the case that
A„=& N, where N is the effective number of atoms
coupled to the field, and A. is independent of p, . Tak-
ing the sum over p, to an integral gives

(20)

( )
t'"o

( )
sin'[T(x'+N)'t'] ~

Xp x'+ N
(21)

n(t) = [I—2 (t)c o[csu t+t$(t)])M
(24)

where cot =2N't Xt and the slowly varying amplitude
function 3 is unity for t =0 and approaches zero as
(N't /t)'t2 when t goes to infinity. It is given in terms
of the well known Fresnel integrals C and Shy

where the dimensionless variables T= Xt, x =b, /h. are
defined, and the number of modes M is

h. &I p dx=M (22)

In the case that p can be taken as a constant over the
range of interest, then the long-time limit of Eq. (21)
is easily seen to be

n (t) ~ (M/2N) [(N't /xo) tan '(xa/N' ) ] (23)

and is approximately M/2N when xo is small compared
to N'~'.

When xo is small compared to N', the integral may
be well approximated by

H"J =A.~~(h~ —h" )/2I"„,

~here

(14)
g (z) =

I [C2 (z) + g2 (z) ]/z ) &&2,

where

(25)

h, =a„+r„,
r =(b, '+A')"'

(15)

(16)

Thus the expansion of exp(iHt) can be summed to
give for the probability of finding a photon in mode iL and

C(z) = Jt cos( —,'ms')ds,

S(z) = „t sin( —,
'

7r s') ds,

(26)

(27)

ppp, (t) = g [exp(iHt) ]„,p, t, (0) [exp( —iHt) ]»
a, b

= ~[exp(iHt)]„, ~',

z =2k. tx /7rN't2. (28)

3 is shown in the figure as a function of the variable
2h. txoz/m. ~N. The amplitude 3 falls to zero as t
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FIG. 1. Amplitude A as a function of time.

since the integrals C and S approach —,
' as t approaches

infinity.
A calculation similar to the present one and involv-

ing only knowledge of H„"J allows calculation of pjj
which has the asymptotic long-time value

pij (1 —M/N) 2.

The conclusion is that "radiation trapping" does not
persist as the number of accessible modes approaches
the number of atoms, as can be seen from Eq. (23) or
(24).

Numerical integration of Eq. (21) in the case that
the density of modes is assumed constant over a fre-
quency band xi' » u X shows that the oscillatory (or
"ringing") behavior seen in the case of xo« JX
(see Fig. 1) persists. As mentioned before, spontane-

ous emission into many modes by an isolated atom
shows an exponential field buildup, and the ringing is
purely a feature of the ¹tom nature. Details of this
and other features such as the behavior of the atomic
system in time for several mode profiles will be given
in a forthcoming publication.
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