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Bound on Time-Reversal Noninvariance in the Nuclear Hamiltonian
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Energy-level fluctuations are calculated by random-matrix methods, for time-reversal noninvari-
ant (TRNI) Hamiltonians. The theory, applied to the data, shows that in the neutron and proton
resonance regions (i.e. , for heavy and intermediate nuclei, respectively), the local rms off-diagonal
multiparticle H(TRNI) matrix element ( D/10, with D the level spacing. Spectral averaging
methods reduce this to a bound on the nucleon-nucleon TRNI vs TRI interactions. First calcula-
tions, for ' Er, give a 1% upper bound.

PACS numbers: 24.60.Ky, 05.40.+j, 11.30.Er

We derive an upper limit for the magnitude of the
time-reversal noninvariant (TRNI) part of the nu-
cleon-nucleon interaction by pursuing a suggestion of
Wigner' that TRNI should be detectable in nuclear
energy-level and strength fluctuations. The possibility
of detection arises, for the spectrum, because the
von-Neumann —Wigner level repulsion is larger for a
TRNI Hamiltonian, and, for the strengths, because the
locally renormalized strength distribution2 has a Xzt

form (the Porter-Thomas law) when time-reversal in-
variance (TRI) is good and X2 when completely bro-
ken. The following simple model-independent argu-
ment shows that it is possible to detect a TRNI rms
matrix element, connecting neighboring levels, which
is somewhat smaller than the level spacing D(E).
Since the eigenstates of the TRI Hamiltonian may be
taken as real, and, in that representation, H(TRNI) is
purely imaginary, the essential transition, as H(TRNI)
is "turned on, " is the admixing of an imaginary ampli-
tude into a real eigenstate. It follows, by perturbation
theory for the interactions with nearby levels, that the
transition is essentially completed when A' 2

—=
i (E'jH(TRNI) jE)/D(E) j

= 1. To determine a
proper bound on the multiparticle TRNI matrix ele-
ment, and to reduce it to a bound on the TRNI
nucleon-nucleon interaction, three things are neces-
sary: (1) a (random-matrix) theory for the A depen-
dence of fluctuation measures; (2) a good analysis of
the experimental data, based on an assumption of TRI;
(3) an understanding, which comes via spectral
averaging methods, of the nuclear structure involved.
The second is already available3; the others are out-
lined here.

The natural ensemble4 5 is (H:v2I = (H(S:tl )
+ I'otH(A:v2) I, where u is real and may be taken non-
negative; the H(S) and H(A) are respectively d
dimensional real symmetric and real antisymmetric
matrices. Their distinct matrix elements are chosen
independently by zero-centered —Gaussian laws, with
matrix-element variances IT,~ (S) = u (1+5,&), this
then forming a "Gaussian orthogonal (u2)" ensemble
[GOE(v2)], and o.;2(A) =u2(1 —5;J). The cases n=0
and 1 describe respectively the GOE appropriate to
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The GOE GUE transition curve for X'(1), as
given by Eq. (2) and by exact theory. Shown also, as
described in the text, are the + 3o. lines drawn for the set of
all neutron-resonance levels (the last group in the table),
and the lines showing the datum point (0.445) and the cor-
responding n2A bound (0.145). Points are indicated for
fifty-member embedded Gaussian ensembles (Refs. 6 and
9) [EGE(n)] of two-body interactions acting in a four-
particle 210-dimensional space; the agreement shown con-
tinues to da2 = ~ (0.347 vs 0.344) and is in accord with the
arguments which give rise to the transition parameter A.

TRI and the unitary ensemble (GUE) appropriate
when no information about TRI is available.

In this model the transition parameter A =n2v2/D2
determines, for a many-dimensional system (just as a2

does for the two-dimensional), the rate of change with
n, near n=0, of local fluctuation measures. It is ir-
relevant that the H matrices are quite unrealistic, cor-
responding, as they do, to many-body interactions. 6

We demonstrate that in Fig. 1 by showing results for a
more complicated embedded ensemble; it is clear also
from the original analysis of the data, 3 and is under-
stood formally in terms of the local nature of the pro-
cess involved. The value of the (large) dimensionality
d is also irrelevant for the A dependence of the mea-
sures, 7 since they rapidly approach their asymptotic
values.

Two elementary facts enable us to find the a=0
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transition-curve slopes. The first is that the sum of
two independent similar ensembles (identical to witnin
a scaling factor) is similar, the variances v2 adding.
The second is that the second-order perturbation ener-
gies arising from the antisymmetric matrix inH(A)
are identical with those from the real symmetric
nH(A ), where [in the H(S)-diagonal basis]
HJ(A) =H»(A) =H~&(A) for i ( j and H;;(A)
= H„(A) = 0. Except for its missing diagonal ele-
ments [H(A)} is a GOE(u2); introducing, then, the
ensemble of real diagonal matrices [ W}= [ w;;&;~},
with the w;; distributed as independent zero-centered
Gaussians of variances 2v, we see that
[H.= H(S)+~[H(A)+ m]} ts a GOE((1+~2)~2)
Manipulating these results, we find for the corre-
sponding eigenvalues of H and H, and then for the
variance Vof the motion of the i th level in (H:v },

E . , (v') = E . , (v')+ aw, , +. . . ,

VM;(u') l

w;;=0, w" =2v
ll

= I'[E (1+~')u')] —2~ u +

the a w;, being independent. We see immediately that,
to lowest order in A, the k th nearest-neighbor spacing
variances are o-2(k;A) = a-z(k;0) —4A, this confirm-
ing our identification of A as the transition parameter
and demonstrating the increase with A of the spectrum
rigidity. Using (1) we can in fact write the slopes, at
A=0, of all spectral measures and correlation func-
tions of all orders. For the "number variance" X2(r),
the variance of the number of levels in an interval
which contains r levels on the average, it turns out that

X2(r:A) = X2(r:0) —4[1 —Y2(r) ]A+. . . ,

where Y2(r) (which =1jm r for r & 1) is the Dyson
two-level cluster functions for the GOE.

These results are adequate for the analysis of data.
But the complete transition curves for two-point fluc-
tuations, which represent the solution of a complicated
nonlinear problem, are of considerable interest. A cal-
culation of the two-point correlation function, based
on the binary-correlation approximation, 4 9'o leads to

X (rA) =Xoup+ 2» 1+
2 2

. (2)
2m2 4 v+2m. 2A

The numerical parameter ~, of order unity, enters
when we use a convergence factor to extend to infinity
a finite sum over d normal-mode excitations of the
semicircular density. Its value can be fixed by match-
ing the GOE(A = 0)-GUE(A = ~) difference for
X2(1) (=0.446 —0.344) which gives r = 0.6155, or the
exact slope of X2(n) at o. =0 (which gives r = —,').
The two values give essentially identical transition
curves; comparison with the later exact theory, " in

TABLE I. The nuclei used for the TRNI bound, their
groupings according to level spacing D, the number p of lev-
els in each group, the values derived for X2(1), and the
resultant bound on the transition parameter as determined
by use of the 3a. criterion discussed in the text. All levels
are 2+ except those arising from the odd targets ' Hf
(J=3,4), ' Hf (J=4, 5), and U (J=3,4), and from
the even target Ca which gives also a ~ sequence. See

Ref. 3 for the primary references to the data.

D

&25 eV

25 —80 eV

80—210 eV

3—6 keV
10—16 keV
16.8 eV
(210 eV

Target nuclei

154Gd 1 7, 179Hf
232Th 235, 238U

)
152Sm 156Gd 160Dy
162Dy 166Er 172+b
182~ 186, 1900s

Cd 's Sm 158Gd
160Gd 164Dy 168Er

Fr
184, 186~
64, 66, 68Zn

Fe

Groups 1+2+3

X'(1)

573 0.426 0.20

466 0.439 0.18

297 0.490 0.09

213 0.444 0.22
213 0.470 0.16
178 0.474 0.16

1336 0.445 0.12

which results appear in terms of integrals, favors the
first value which gives, for X (r) with r & 1, errors
only in the third decimal place.

The usable data are taken from a recent fluctuation
analysis3 which deals with 1762 levels from the 32 nu-
clei. We mainly use X2(1), optimal for our purpose,
and for comparison with data adopt a 3o. criterion
which then defines a confidence interval about the
theoretical X (1)-vs-A curve of Fig. 1. The data value
defines a horizontal line whose intersection with the
upper edge of the band gives the upper limit Ao. The
sample error, derived3 for a =0 (TRI) by a combina-
tion of theory and Monte Carlo calculations, and since
verified for TRNI, is

cr(p A) —0 6(2/p)1/2X2 (1)—() 35' —t/2

where p is the number of levels in the sample. For a
run of 100 levels 3a. ——0.1 so that the band may span
the entire GOE-GUE difference. To obtain more lev-
els we combine the data, according to their average
level spacing (a rough measure of complexity) into
five exclusive groups. The results for these groups,
and for two others, are given in Table I. All groups
give about the same value (0.1 —0.2) for the upper
bound on A'/2 (and no lower bounds are indicated).
The analysis shows that to improve this bound by an
order of magnitude would require —106 levels.

For the strength distributions mentioned above, the
X2t X2ztransition is also moderated by the parameter
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A, so that we can reasonably expect results similar to
those given by the spectra. This expectation is borne
out by a calculation of the transition curve, combined
with a preliminary data analysis, which gives approxi-
mately the same upper bound.

To deduce from this bound a corresponding bound
for the nucleon-nucleon interaction we rewrite H as
h+ V(TRI)+iotU(TRNI), with h the one-body part.
For a given nucleus with h, V, and U specified in a
model space fixed by an appropriate set of spherical or-
bits we could in principle (but not in practice) deter-
mine ct by a huge shell-model calculation. We would
proceed by first diagonalizing Ho in the many-particle
space, then calculating the U matrix in the resultant
basis, and finally choosing n to match the TRNI
matrix-element bound determined above. The orbital
space and the it operator come from inspection of the
single-particle spectrum (available, for example, from
a zero-deformation Nilsson calculation); for '69Er, for
example, there are nine active orbits, giving, for the
21 active nucleons, a space dimensionality 6X10",
which splits into —30000 positive-parity configura-
tions, —1000 of which contribute significantly to the
nuclear states in the resonance region. Any of the
standard interaction forms could be used for V, the
strength being adjusted to fit the level density in the
resonance region; with the surface-delta interaction'2
we would find a reasonable interaction strength. Since
the only aspect of the (antisymmetric) U which we
need to know about is the rms near-diagonal matrix
element in the resonance region, we in fact need no
general form for U. For the purpose of the calculation
we could assume that Uand V have the same norms in
the two-particle space but are uncorrelated in low or-
der.

Conventional shell-model calculations being obvi-
ously impossible, we resort to spectral-averaging
methods'3'4 which, with the same input as above, un-
dertake to give the shell-model results correct to
within fluctuations. They derive from the existence of
central limit theorems (CLT's) in the spectroscopic
model spaces. The CLT's generate essentially Gauss-
ian configuration distributions. ts The spectral meth-
ods give their centroids and variances, thus fixing the
ground-state energy and the configuration decomposi-
tion of the states via a construction of the spectral dis-
tribution function; an extension of the standard theory
has been worked out to deal with the angular momen-
tum (most of the data are for J= —,

' ).
Ignoring the J extension for purposes of discussion,

we remark that an approximate form (Eq. 36 of Ref.
14) for ~(W(E') UW(E)) ~2, locally averaged in the
neighborhoods of E' and E, follows from the config-
uration decomposition of the states. We go beyond
that, as far as the quadratic terms in the exact formal
expansion (Eq. 42), which takes account of correla-

tions ignored in (36).
This theory with its 1extension, applied to ' Er, has

given a I'/o value for n which, as should be clear from
the fact that Uand Vhave the same norms, is a proper
bound for the local magnitude of U(TRNI) compared
with V(TRI). We propose shortly to extend the TRI
calculations, to apply them to other nuclei listed in
Table I, to complete the analysis of strength distribu-
tions, to make comparisons with other TRNI deter-
minations, '6 and to consider applications of the same
methods to other symmetries.
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