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Puzzling Aspect of Quantum Field Theory in Curved Space-Time
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A $ field theory in a six-dimensional conformally flat space-time is studied at the two-loop level.
It is found that the state-dependent divergences do not cancel and thus the theory does not become
renormalized in the usual way.
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Currently, it is believed by some workers in the field that any theory which is renormalizable in flat space-time is
renormalizable in curved space-time. In this Letter, we present the results of an explicit calculation which leads us
to believe that this is not a foregone conclusion. A longer account of this work will appear shortly.

We study a @ theory in a six-dimensional conformally flat space-time. The metric is

ds2 ~2(~) d~2 X (dxl)2 (1)
1=1

and the Lagrangian density is
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where $ is the renormalized field and is related to the
bare field @0 by JZ @= $0. The wave-function renor-
malization constant and the counterterms are defined

!
As usual, m~ = mit + 5 m and gz = (it + 5$.

The expansion for g~ given in Eq. (5) is the general
't Hooft —type renormalization prescription for the re-
normalization of a parameter that appears in the
Lagrangian. In this renormalization scheme g and g
are both treated as running coupling constants. The
other popular renormalization scheme is the one advo-
cated by Collins. ' Collins picks (~=((n) =(n —2)/
4(n —1). The difference between these two ways of
treating ( is just the usual ambiguity in any renormali-
zation formalism. That is, one can add to Eq. (5)
terms of order n —6 which vanish at the physical
dimension. If one takes gz = —,

' and adds g(n) ——,
' to

the right-hand side of Eq. (5), one returns to Collin's
renormalization scheme. These two renormalization
schemes provide two distinct, independent ways of
treating g.2 Both renormalization schemes break con-
formal invariance but the magnitude of the symmetry
breaking is different for the two schemes and only ex-
periment can decide which is the correct scheme. 2

Drummond3 has renormalized @3 in six dimensions
in a seven-dimensional spherical space-time; however,
Drummond took gtt =g(n) and thus his results cannot
be compared with ours.

Macfarlane and Woo~ have renormalized $3 in six
dimensions in flat space-time at the one- and two-loop
levels. Here we report the results of our two-loop cal-
culation in a space-time whose metric is given by Eq.
(1). The one-loop calculation has been done by Gasss
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Instead of working directly with GF, it is easier to de-
fine gF as

gF(x,x')

II (+)(n —2)/2G (x xI) ~ ( ~) (n —2)/2

and work with gF. The equation gF satisfies is

(8)

[ .'+m' —/e]gF(x, x')

(7)
I where

= —5"(x—x')+ V(q)gF(x, x'),

and Toms and we use the notation of Gass. 5 We treat
both the m2@2 and the R@2 terms as operator inser-
tions.

The Feynman rules for the theory have been given
by Birrell7 8 and by Gass~ 9 and we will just state them
here. The equation that the Feynman propagator GF
satisfies is

[a„+gR (x) + (m' —i e) ) G„(x,x')
= —~ "(x,x') [ —g(x) ]

m =—m 0'/'(q = — ),
and is the flat space-time d'Alembertian.

The propagator gF is the propagator for C
—= 0(" 2)/2@ and the Feynman rules that we give are
for the 4 field. This means that we have an additional
(and time-dependent) interaction term because

( g) t/2g @3~ Q (+ )3 ll/2 ( g) 1/2g @3

diagrams can be removed by choosing

C24= 5/36(4m)6,

and

C)4= 13/432(4m)6.

(13)

(14)
Therefore, the C3 vertex is not just g~43 but is
go[1+ —,

' (n —6)lnA(q)]4 . Since the InO(7)) pieces
are of order n —6, two-loop diagrams with one
InA (7)) insertion will have single pole terms contain-
ing InQ, (p, ) pieces. It can, however, be shown'o by
explicit calculation that all the InA(p, ) divergences
cancel among themselves. The Feynman rules are the
following: (1) for each vertex, a factor of
—ig[1+ —,

' (n —6)lnQ(q)]; (2) for each propagator
with momentum q, a factor of i/q2; (3) for each mass
insertion, a factor of im; and (4) for each Vinsertion
into a line carrying momentum q, insert i V(qo qo ), —
multiply by exp[i (qo —qo ) ], and integrate over qo,
where

V(p, q) = (1/2 )Jr e' ~ q ~ V(q) dq. (12)

Note that our operator insertions involve m2 and V
instead of m2 and R; this is just a matter of conveni-
ence. It should also be noted that the V insertion
(which will be denoted by a triangle) changes the zero
component of the momentum of the line that it is in-
serted into. This is because the space-time is not in-
variant under time translations.

Insertions are to be made on the diagram in all pos-
sible ways such that the resulting diagram remains
divergent. Simple power counting shows that each
self-energy diagram will have at most one Vor m in-
sertion and that there will be no insertions on the ver-
tex diagrams. Hence, it suffices to consider only the
self-energy diagrams.

The self-energy diagrams with no insertions are the
same as in flat space-time. The divergences in these

(a)

(a) The self-energy
with V inser tlon

(b) The self —energy
with V insertion

(c)

(c) The self —energy
with V insertion

(d) The self - energy
with V insertion

(e)

(e) Diagram (1.e) with vertex
counter term

( f ) Diagram (1.e ) with wave
function counterterm

FIG. 1. V insertions on the self-energy at the two-loop
level.

Those coefficients agree with Macfarlane and Woo's4
result and with Kounnas's" result.

The diagrams with Vinsertions are shown in Fig. l.
It is obvious that the diagrams with mass insertions
will be the same except for the replacement of the V
insertions by mass insertions. The only change from
the flat space-time case for the mass insertions is that
m is replaced by m
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The contribution from Fig. 1(a) is

—ig p V(g) (y —3/4) V(q) 2R (p)
(4m)6 p (n —6) (n —6) (n —6)

where

R (p) =„di e o R, (p, i),
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—t)+x(1 —xt) l2/p2 —2x(1 —t) l p/p~I. (i7)
0

The R (p) term is a state-dependent divergence. All such divergences must cancel when the diagrams are summed
if the theory is to be renormalizable.

The contribution from Fig. 1(b) is
'n —6

S„(p)= (18)n—

The contribution from Fig. 1(c) is

I' 4 2
6

43 2(4 )6

—1 9/4 —y
(n —6)

(19)

—2V(7l) (13/6 —2y) V
(n —6)2 (n —6)

V 7l (20)

The contribution from Fig. 1(e) is

There is no state-dependent divergence from this diagram. This will spoil the renormalizability of the theory since
there will be no state-dependent divergence to cancel against the state-dependent divergence from the conformal
coupling-constant renormalization.

The contribution from Fig. 1(d) is
1 n 6 t

S„(p)= 4R (p)
8(4~)' &' (n —6)

~4s(p) = ig 2 V(q) V(q) p (y —1/2) 2R (p)
(4m ) (n —6) (n —6) p, (n —6) (n —6)

(21)

The contribution from Fig. 1(f) is

~46(p) = ig4 V(~) + V(~)
1

p2 +(y-1/2) V + R(p)
2(4m )6 (n —6) 2(n —6) p, 2(n —6) (n —6)ln + Vv) + (22)

b24 ——s/4 (4m) 6,
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d„=S(g ——,
' )/4(4~)',

dg4 ——7(& ——,
' )/6(4vr)6.

(23)

(24)

(2s)
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However, there still remains a factor of [ig /(4~) ]
x [3V(q)/4+R(p)]/(n —6) and this factor cannot
be removed by any of the counterterms in Eq. (2).

The trouble can be traced to the diagram shown in
Fig. 1(c). This diagram has no state-dependent diver-

The easiest way to handle the conformal coupling-
l

constant renormalization is to use Zgz instead of gz
in the one-loop diagram. When this is done and the
mass insertion diagrams are calculated, we find that
most of the infinities can be removed by choosing

gence and so there is nothing to cancel the state-
dependent divergence from the conformal coupling-
constant renormalization. The other state-dependent
divergences cancel just as one would expect; that is,
the pattern of cancellation is the same as for the
ln(p2/p, 2) terms.

It should be stressed that the Symanzik identity is
satisifed (that is, we have only one Z) as are the
't Hooft pole identities~', consequently, our results
satisfy all the consistency conditions required of a field
theory.

The presence or absence of state-dependent infini-
ties depends on the details of how the momentum
flows through the graph. This is why Fig. 1(c) has no
state-dependent infinity but Fig. 1(d) does. Presum-
ably this is also why the state-dependent infinities in
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cancel. ' ' We are very surprised at the differ-
ence between @4 in four dimensions and $ in six
dimensions. 3 priori one would expect them to behave
in much the same way, yet $ is renormalizable to all
orders in any space-time, '3 whereas @3 is very badly
behaved.

It can be argued that this result merely shows that
the expansion of gz given in Eq. (5) is incorrect and
that one should take g~= (n —2)/4(n —1). With this
choice @ in six-dimensional conformally flat space-
time is renormalizable at the two-loop level. However,
Collins' has shown that although g=((n) works for
@4 when 't Hooft's method" is used to sum the diver-
gences, the theory is not finite order by order if (
=$(n). Collins finds that at the four-loop level and
beyond, the divergences do not cancel if $=((n).
Thus it is not clear that ('=g(n) is a significantly
better choice.

The implications of our results are unclear. The
physically interesting theories in the world are gauge
theories and these theories may not be afflicted with
the problems @3 has. For gauge theories one cannot
add an 8 term in any natural way (except, of course,
for the Higgs sector). It is true that in nonconformally
flat space-times there will be state-dependent diver-
gences even without an R term but the gauge invari-
ance of the theory may force these terms to cancel
(see, for example, the" calculation by Panaganden' and
the work by Parker and Toms' and the references
contained within). We are well aware of the fact that
the existence of state-dependent divergences in curved
space is at variance with generally held beliefs. If the
calculation presented here is indeed correct and com-
plete, the renormalization process in curved space is
more subtle and intricate than previously believed. In
that case, it would be essential to obtain a deeper,

more physical appreciation of the origin of these diver-
gences. It would be especially interesting if gauge in-
variance would indeed be the mechanism that led to
the elimination of these divergences. But such specu-
lations must await the definitive confirmation that the
divergences reported here are indeed real and not the
result of a calculational error or the omission of essen-
tial terms or processes. Since our results satisfy all the
known consistency conditions, we do not believe this
to be the case.
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