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Localization of Third Sound by a Disordered Substrate
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We propose the use of third sound in He films on a disordered substrate as a system for the
study of Anderson localization in two dimensions. Quantitative predictions for the localization
length are made with use of the self-consistent diagrammatic theory of localization. Dramatic ef-
fects are predicted in an experimentally accessible regime.
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Anderson localization is a general feature of wave
propagation in disordered media. Though most
theoretical and experimental effort has been devoted
to understanding localization in solid-state systems,
several authors have pointed out that localization may
be observable in a variety of other systems. 2 s The
purpose of this Letter is to argue that the third-sound
modes of a 4He film on a disordered substrate will ex-
hibit Anderson localization. Using the self-consistent
diagrammatic theory of localization'6 applied to the
classical wave equation, we give quantitative results
for the localization length and predict dramatic effects
in an experimentally accessible regime.

The propagation of third sound on disordered sub-
strates has recently been studied in several labora-
tories. s 9 We shall focus attention on the experiments
of Smith et al. In these studies the substrate is a flat
glass slide to which disorder is introduced by dusting
with small (1—10 p, m) particles at densities of the or-
der of 10s cm 2. Third-sound pulses are generated at
one end of the slide and detected at one or more loca-
tions away from the source. The shape and time of ar-
rival of the pulse is monitored and compared to identi-
cal pulses propagated on a clean substrate.

Figure 1 shows a cross section of a single dust parti-
cle and the film profile surrounding it. The film is
bound to the substrate and the dust particle by the van
der Waals force, and the profile near the dust particle
is determined by the competition between the van der
Waals attraction and surface tension. The equilibrium
profile may be obtained by minimization of the grand
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FIG. 1. Cross section of a single scatterer and the film
profile surrounding it, showing capillary condensation
around the base of the scatterer.

potential, with the temperature and chemical potential
held fixed. For our purposes, the important feature of
this profile is the relatively large volume of fluid col-
lected around the base of the dust particle. We denote
the extra volume of fluid associated with a single dust
particle by 5 V.

The mechanism by which the dust particles serve to
scatter third sound is as follows: The characteristic
times and distances associated with these scatterers are
much shorter than those associated with the sound
modes, so that the film profile around a scatterer at ro
remains in local equilibrium with the surrounding film
and is determined by the local chemical potential
p, (rp, t), or equivalently, the local height h (ro, t). As a
sound wave passes, 5 Vmaintains its local equilibrium
value, b, V(h(ro, t)). Thus, by continuity, an extra
amount of fluid, proportional to o. = dA Vjdh, flows
into and out of the region near the scatterer during the
disturbance. For long wavelengths and low frequen-
cies, we show that o. is the only quantity needed to
characterize a scatterer.

The Lagrangian density per unit area is given by

where m is the atomic mass, p, o is the equilibrium
chemical potential, a.

o is the number of atoms per unit
area on a clean substrate with chemical potential p, o
is the gradient parallel to the substrate, and 0 (p, ;r) is
the grand potential per unit area as a function of the
chemical potential and position. At fixed temperature
and surface area,

dQ(p, ,r) = —o-(p, ,r) dp„

where o-(p, ,r) is the number of fluid particles per unit
area. Both A and o- are coarse grained over cells
which, on average, contain many scatterers. At low
temperatures, the thermal component of third sound is
small and we ignore the dependence of 0 on the tem-
perature. The field variable, P(r, t), is defined via the
local chemical potential according to

j(r, t) = —m t[p, (r, t) —po]. (3)
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The force law for the superfluid on a flat substrate is
mv(r, t) = —V'p, (r, t), so that far from any scatterer,
@(r, t) corresponds to the velocity potential.

Using the Euler-Lagrange equations and the ther-
modynamic relation, Eq. (2), we obtain the following
wave equation for the fluid;

m
Bo. 8 @ —irons' @=0.
Bp Bt

(4)

where co is the speed of third sound on a clean sub-
strate, co = [ (/t/m) 8p/8 h ] '

In Eq. (1), contributions to the kinetic energy due to
the scatterers have been omitted. These contributions
depend on the geometric area of the scatterer rather
than the effective area, n. For the scatterers under
discussion, and thick (10—30 atomic layers) films, n is
much larger than the geometric area so that kinetic-
energy contributions can be ignored. For hard disks,
on the other hand, —n is equal to the geometric area
of the scatterer and the kinetic-energy term in the
Lagrangian density is significantly modified. This ac-
counts for the difference between our results and
those obtained by Kirkpatrick7 for hard disks. In
deriving Eq. (5) we have also ignored dissipation
which should be a good approximation for sufficiently

I

Since, as discussed above, the areal density of the fluid
is modified by the scatterers, the derivative, Ba./BitL,

depends on the areal density of scatterers, p(r), and
we obtain a wave equation with a spatially varying
sound speed,

1 82[1+p (r)n] —'7' y(r, t ) = 0,
C

2 2

low temperatures. '

The scatterers are Poisson distributed on the sub-
strate, so that for long wavelengths, p(r) can be ap-
proximated by a delta-correlated Gaussian random
variable. The average value, po, of p(r) can be includ-
ed in a renormalized sound speed, c, leading to the fol-
lowing disordered wave equation,

1 B2[1+x(r)] —W' @(r,t) =0,
C2 t2

(6)

where

c = co(1 + pon ) (7)

(x(r)) =0,
and variance given by

( X (r) X (r' ) ) = y 2o- (r —r' )

with

t/2 (1+ ) —/

(8a)

(8b)

(8c)

I'roperties of the model can be obtained from a per-
turbation expansion in powers of y2 using standard
many-body techniques. We shall consider the average
Green's function and the average squared Green's
function. For each realization of the disorder, the
Green's function, G(rtlr't') satisfies the wave equa-
tion (6) with a delta-function source term. Taking the
Fourier transform of the average of the Green's func-
tion and expanding the self-energy, XE(k), to order
y2, we obtain

and X(r) =o.[p(r) —po](1+npo) ' is a Gaussian
variable with zero mean,

G (k) = I dt d (I —r ) eik ~ (r —r') —i &E+re)t( G(rtlr'())) = [(E/c+ i6) k XE(k) ]dP

with

&E(k) = i y2E4/4~c+ O(y4). (10)

For sufficiently low frequency, the self-energy is small and the dominant effect of the disorder is to diminish the
propagation speed by an amount given by Eq. (7). At somewhat higher frequencies, there will be attenuation of
the wave due to multiple scattering, with an attenuation length given by

i(E) = 8c'/y'E'.

Both of these effects have been verified qualitatively in experiments of the kind described above.
When the average Green s function predicts strong attenuation of a signal it no longer correctly describes pro-

pagation on a single disordered substrate. The Green's function, G(rtlr't') fluctuates from one realization to
another and may take both positive and negative values, so that for strong disorder, its average is much smaller in
magnitude than a typical value. We therefore study the average of the square of the Green's function. ' The
Fourier transform of the square of the Green's function introduces a frequency convolution having a kernal,
PE(k, co), which we call the intensity propagator:

PE(k, c0) =Jr d (r —r')e '"' ' ' (Gg~ /2 (rlr') GE /2 (rlr')), — (12)

where —and + refer to advanced and retarded Green's functions, respectively. If the system is excited by a pulse
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at the origin of width b, E &) c0 then PE(k, co) is the k and co Fourier component of the average intensity resulting
from the EFourier component of the pulse.

The intensity propagator can be expanded in terms of GE(k, c0), and averaged over pairs of scattering events
which correlate the two Green s functions in Eq. (12). This expansion is diagrammatically identical to that arising
in the self-consistent many-body theory of electron localization. The calculation as a whole is similar to the hard-
disk calculation of Ref. 7, differing primarily in the angular dependence of the vertex. Details of the calculation
will be presented in a future paper. To order y2 the expansion of the intensity propagator leads to a diffusive pole,
while higher-order terms yield divergent integrals. Among the most divergent diagrams are the maximally crossed
diagrams first discussed by Langer and Neal. '3 For small k and c0, these can be resummed and will contribute to
the diffusive pole,

PE(k, t0) = (c'/4E) [ —i cu+k'DF(r )]
where the diffusion coefficient is given by

(13)

and

DE(~) Dg ) 4nc".« i«) ' ( —it0+ q D) )
(14)

D) ) =2~//y E (15)

is the diffusion coefficient obtained from the lowest-
order diagram. The integral in Eq. (14) results from
the sum of the maximally crossed diagrams and
diverges to —~ as o& 0. Physically, the divergence
arises from coherent backscattering as in the quantum
case. Following Vollhardt and Wolfle, 6 we replace
Dj ) with DE(o&) in this integral. This leads to an in-
tegral equation for DE(co) which, for small c0 and E,
yields

DE(t0) = —icing'(E),

where the localization length g(E) is

g(E) = l(E)exp(EO/E)2,

and the frequency Eo is given by

Eo = (2m ) i c/y.

(i6)

(17)

The frequency dependence of the localization length
given in Eq. (17) is in qualitative agreement with the
field theoretic results for phonon localization obtained
by John, Sompolinsky, and Stephen. '4

These expressions are valid only for E( Eo. The
meaning of Eqs. (13), (16), and (17) is that energy in-
jected into the system at frequency E will not spread
further than a characteristic distance ((E). An alter-
native expression for Eo, which may be more useful
for comparison with experiment, follows from Eq. (7),

Eo= (2vrpa) i neo/(n 1), —

where n = cp/c is the low-frequency index of refrac-
tion. In the experiments reported in Ref. 8, both co
and n vary with film thickness, with co decreasing and
n increasing as the film is thickened. Thus, a desirable
feature of the superfluid system is that the strength of
the disorder can be continuously varied by varying the
film thickness. For films with hz=20 atomic layers,

po ——105 cm 2, co ——400 cm s ', and n = 2.25, we ob-
tain Eo/2m. =28 kHz, which is experimentally accessi-
ble.

In summary, we have discussed a model of wave
propagation in a two-dimensional disordered medium
and made quantitative predictions for the localization
length of third sound in He film on a rough surface.
In this experimental system both the frequency and
the strength of the disorder can be continuously varied
through a range for which the predicted localization
length goes from effectively infinite to less than a mil-
limeter. In addition to its intrinsic interest in under-
standing 4He films, this system may provide a quanti-
tative testing ground for the basic theoretical ideas of
two-dimensionai localization unencumbered by com-
plications, such as electron-electron interactions, in-
herent in solid-state systems.
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