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New Evidence Concerning the Griffiths First Sum Rule
for Tricritical Light Scattering
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Experimental studies of light scattering in the tricritical region of mixtures of ethane with heavier
hydrocarbons show that the intensities and correlation lengths do not satisfy the asymptotic form of
the Griffiths first sum rule. Both sums increase sharply rather than approaching zero as the tricriti-
cal point is approached, indicating that either (a) there is a nonclassical divergence in the sums, or
(b) many terms must be retained in a power series for the coupling "constant. " Similar results
have been found in a reanalysis of earlier experiments.
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In this Letter we report experimental studies of light
scattering near an unsymmetrical tricritical point that
show that the scattered intensities and correlation
lengths for the three coexisting phases n, P, and y do
not satisfy the asymptotic form of the Griffiths first
sum rule. ' Rather than approaching zero, both experi-
mental sums increase sharply as the tricritical point is
approached; the intensity sum shows considerable cur-
vature in the appropriate field variable. Similar
behavior is also revealed in a reanalysis of the data of
Kim and co-workers2 for a quaternary system.

Theoretical analysis shows that within the context of
mean-field theory neither sum should in fact approach
zero, provided that care is taken to consider the effects
of the proportionality factors relating the order-param-
eter fluctuations to the scattered intensity and the cor-
relation length. When this is done, the experimental
results are consistent with the first sum rule, but
high-order terms in the proportionality factors must be
retained to obtain a fit. Alternatively, the curvature
could indicate that the sum is actually divergent. A
third possibility is that the curvature might be due to
background fluctuations that cannot be separated from
the tricritical fluctuations.

According to the sum rule' the susceptibilities,
X = (r12 Y/tlg2) ', where Yis the free energy appropri-
ate to an order parameter Q, should satisfy the rela-
tionship

y„=x'/'+ x'/' —x' '=0.
X a

No statistical-mechanical model yields the "order
parameter" for fluid mixtures, so that Q must be
determined empirically. The square root of the light-
scattering intensity, I'/, and the correlation length (
are proportional to X', with proportionality factors

(coupling "constants") kt and k& of the form4

k = kp+ ktQ+ k2$ + k3$

+ k4$4+ ks4s+ k646+ (2)

As the tricritical point is approached, all the Q's ap-
proach zero, i.e. , the k's approach the ko's. Thus, in
this limit, one might expect two other sums to ap-
proach zero as well:

I 1/2 + I 1/2 I 1/2 ()I a y P
?

&g=4 +0, —(p=0

(3)

(4)

Y= ao+ at/+ a2$ + a3$ + a4$ + Q, (6)

and is alleged4 to be unaffected by the logarithmic
corrections expected for tricritical points in three
dimensions. In (6) the coefficients a„, which vanish

As we shall see, this is not the case, even if (1) is
correct. However, if (1) is recast in the form of a
dimensionless ratio,

R„= (x'/ +x'/ )/xh' =1

then, in the asymptotic limit, the corresponding exper-
imental ratios At and R& should also equal unity. Pre-
vious workers have reported their results exclusively
in the form of ratios; we have found that trends are
much more easily seen in the sums themselves.

It is well known that for tricritical phenomena the
boundary between classical (mean field) behavior and
nonclassical (nonanalytic) behavior occurs at a dimen-
sionality of three, so that a classical treatment has been
deemed appropriate. ' Consequently, the first sum rule
was obtained' from a phenomenological theory that
starts with a sixth-order polynomial for Y,
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at the tricritical point, are functions of several field
variables including one chosen to measure the distance
from the tricritical point, perhaps T, —T or, for our
quasibinary mixtures, b, n = (n) —(n) „where (n) is
the average carbon number of our quasi-one-com-
ponent mixture of heavier hydrocarbons. There is no
coefficient a& in (6) because Q is defined so that the
sum of its values in the three coexisting phases,
np+ pp+ yp, is exactly zero for all 5n It c. an be shown
that, in the region of three pha-se coexistence, ap, at, a2,
and a3 scale as powers of a4. We may conveniently
take a4= —6hn and a3= —40(hn); then ap, a&,
and a2 must equa140 (An ), 120(hn), and 9(h n),
respectively. Here 0 is a parameter that varies across
the three-phase region from —1 at one critical end
point to +1 at the other. [In our quasibinary mixtures
0 is, to a good approximation that becomes more near-
ly exact as one approaches the tricritical point,
(2 T TU T—L)/( —TU TL), whe—re TU and TL are the
upper and lower critical-end-point temperatures. ] One
can then rewrite (6) in the form

&= [(~p —y) (pp —
q ) (yp —y) l'

= [2g(gn)3t2+3(gn)$ —P3]2=0 (7)

Xt= [k2+3k4hn+2ks0(b, n)

+9k, (b, )'+. . . ]/2'i'. (9)

Note that the coefficients kp, k&, and k3 are missing;
they are multiplied by functions of np, pp, and yp that
are exactly zero. The sum X& will also be of the form
(9), but the coefficients will be those appropriate to k&
rather than kt. If the classical equation (9) is applica-
ble, then clearly the behavior of Xt and X~ is deter-
mined by such high-order terms in (2) as to render
hopeless any attempt to evaluate them directly, be-
cause coefficients beyond k2 are inaccessible experi-
mentally.

It is more natural to discuss experimental coex-
istence curves in terms of the directly measured exper-
imental densities, rather than in terms of an "order

Differentiation to obtain the susceptibility and sub-
stitution of Q by its value in the appropriate phase
yields each term in the sum X„, e.g. , Q =pp yields

Xg'= [2' '(yp —Pp) (Pp —~p) l

Since np, pp, and yp are proportional to (An)'t, (8)
predicts that X' diverges as (b, n) ', a prediction con-
sistent with our experimental measurements of inten-
sities and correlation lengths.

When all three susceptibilities are combined into the
sum X„, one obtains the result X„=O. However, if
one uses the proportionality factors (2) to get the in-
tensities or the correlation lengths, the higher coeffi-
cients in the power series produce a different result:

parameter" constrained to make (1) and (6) exact no
matter how far one is from the tricritical point.
Although such an approach is unnecessary for a dis-
cussion of light scattering, the sums can be derived7
from a free energy that is a function of several labora-
tory densities with the light scattering resulting from
fluctuations in each. The resultant equation for Xt has
exactly the same form as (9), although the various
coefficients are now combinations of coefficients in
various power series in the densities.

The discussion above, in terms of Q, is similar to the
treatment of Kaufman and Griffiths who attempted to
account for the experimental light-scattering results of
Kim and co-workers2 3 on the four-component system
water+ ethanol+ benzene+ ammonium sulfate. How-
ever, in attempting to evaluate kt from experimental
data, they effectively retained terms in (2) only
through k2$2; we have found that, if both sums are to
be fitted by a classical theory, one needs to keep terms
up to k6$ .

Our light-scattering studies were carried out at the
University of California at Santa Barbara on the quasi-
binary systems ethane+ (n-heptadecane+ n-octade-
cane) and ethane+ (n-octadecane+ n-nonadecane),
systems whose thermodynamic properties have been
studied at the University of California at Los
Angeles. 8 9 Each sample is characterized by a parame-
ter (n), the mole-fraction —average carbon number of
the mixed Ct7-Ct8 (or C»-C&9) solute. Unlike the
quaternary system, these systems allow the investiga-
tor, in a single loading of the cell, to examine the
three-phase region over the entire temperature range
from the lower critical end point to the upper critical
end point and, by varying ( n), to approach the tricriti-
cal point in a systematic manner.

Intensities of the scattered light were measured in
both the forward and the backward directions, which
permits calculation of (. Multiple scattering was sig-
nificant only in the p phase of the mixture ((n)
= 17.765) closest to the tricritical point ( ( n ),
=17.62); these intensities were corrected by ~ 10'/o

with the method of Guttinger and Cannell. 'P Details
of the experimental techniques and the complete set of
results will be published later. "

For each sample the end-point temperatures TU and
TL were determined; for some samples the light
scattering was measured at a series of temperatures
between them. For a given sample (i.e. , fixed (n))
the experimental sums Xt and X& are constant to
+ 10% (better than the experimental uncertainty) over

the entire range of temperatures studied ( Tt + 10
mK» T~ TU —10 mK), in accord with (9) if the
term 2k&0(hn)3t2 is negligible. Consequently many of
the sets of measurements were made only at the mid-
temperature T~ = ( TU+ TL)/2.

Unlike the sums, the ratios RI and R~ depend

2235



VOLUME 54, NUMBER 20 PHYSICAL REVIEW LETTERS 20 MAY 1985

strongly upon 0, since

R, —1 = Xt/Ip'i2.

The intensity I&, like the susceptibility X& itself, be-
comes infinite at the two critical end points, which
makes Rt exactly equal to unity there. Between the
end points ( —1 ( 8 & 1), Rt —1 has a complex
dependence upon 8, and an initial proportionality to
the first power of An, features already reported in a
previous Letter. '

We turn now to the measurements made at the mid-
temperature T . Figures 1(a) and 1(b) show the sums
Xt and X~ at the midtemperature T as a function of
An for five samples having values of TU TL ra—nging
from 38 to 1311 mK. The error bars shown result pri-

1.0

marily from sample-dependent systematic effects, in-
cluding gradient formation, slow separation of some
phases after stirring, and irregular wetting of the cell
windows; thus they must be considered somewhat sub-
jective. It is apparent that as (n), is approached the
sums increase sharply. Over the limited range of (n)
for which ( is accessible, X& is linear in b, n and appears
to approach a finite value. Over the same range, Xt is
nearly linear, but considerable curvature is indicated
by the point at (n) =1.4, which might suggest that Xt
diverges.

The same trends appear in the results of Kim et al. 3

for two samples of fixed composition. Their measure-
ments span the three-phase region, but do not ap-
proach either critical end point. When these sums are
plotted [Figs. 2(a) and 2(b)] against T T„ the —vari-
able equivalent to our 5 n, they also increase sharply as
the tricritical temperature is approached. If the results
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FIG. 1. (a) Intensity sums Xt (arbitrary units) and (b)
correlation length sums X~ (nanometers) for the systems
ethane+ ( n-heptadecane+ n-octadecane) and ethane+ ( n

octadecane+ n-nonadecane). ( n ) is the average carbon
number of the mixture of heavier hydrocarbons and
(n), =17.62+0.02. The fitted curves are as follows: (a)
Solid line, 1.10—1.896, n + 0.90(h n) ~, and dashed line,
0.18(hn) ', (b) solid line, 20. 1 —28.8hn, and dashed line,
2.9(a n)

T —7
(b)

FIG. 2. (a) Intensity sums Xt (arbitrary units, different
for samples A and B) and (b) correlation length sums X~
(nanometers) for the system water+ethanol+benzene
+ammonium sulfate [Kim et al. (Ref. 3)]. 5 T = T, —T is
the difference between the tricritical temperature and that of
the measurement. Each sample (A, denoted by circles, and
B, denoted by diamonds) is a single loading (fixed composi-
tion). The fitted curves are as follows: (a) solid line,
134—2486, T+ 132(b, T)2, and dashed line, 20(h T) ', (b)
solid line, 74 —843, T+ 31(b.T)2, dotted line, 63 —476 T (fit-
ted to B points only), and dashed line 20(b, T)
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of the A and B series are combined, X& shows marked
curvature. Ho~ever, it should be noted that the indi-
vidual correlation lengths differ significantly between
the two purportedly similar samples, so that placing
the sums on the same curve may not be justified.
(The intensity sums cannot be combined at all because
the units are arbitrary. )

We have tried to fit each of the four sets of data by
two functional forms, (9) with three parameters
(k5 = 0) and a simple divergence proportional to
(b, n) ' or to (T, —T) ', with the results shown in
Figs. 1 and 2. The fit with a divergence is not im-
proved substantially by addition of extra terms [e.g. ,
terms in (6 n)

0 and (6n) + ']. The three-parameter
classical fit is somewhat better than the one-parameter
divergence, but the evidence is hardly conclusive.

The possibility that X& should itself be divergent has
theoretical support. Fisher and Sarbach' ' found that
amplitude ratios in a spherical model differed from
their classical values; Stephen'5 reached similar con-
clusions for other models provided that one was not
too close to the tricritical point where logarithmic
corrections' should dominate.

These expectations have found further support in
calculations by Rudnick and Jasnow' for an Ising
model. They find that a one-loop correlation to the
asymptotic classical theory shows that the sum X„
diverges as (b, n) ' and, at this level of refinement,
the limiting value of the ratio Rx is greater than unity.
Further renormalization-group corrections introduce
logarithmic factors that slowly reduce R„ to unity [as
( —1nb, n) '/ 1; however, a weak logarithmic conver-
gence cannot overcome a strong divergence, and so
the sum Xx still diverges. Unfortunately this theory
does not yet give a magnitude to the proportionality
factor, so that the amplitude of such a divergence is
not known.

A third possibility is that background contributions
to the scattered intensity, not associated with the tri-
critical point (i.e. , due to a regular contribution to the
free energy Y)„become significant at large An, where
the scattered intensity is smaller by about 2 orders of
magnitude than it is for the sample with the smallest
6 n. However, three of us (C.M.K. , I.L.P. , and
R.L.S.) believe that, in an entirely classical theory, all
such background terms can be included in a complete-
ly general power series like (2), leading to the form
(9).

The fact that the ratio X&jX& is constant for our data
near the tricritical point suggests very strongly that the
behavior observed in that region is actually that of Xx
itself and does not reflect the effects of variation of
the proportionality factors k/ and k& as a function of P.

If so, then clearly X„ itself does not approach zero
asymptotically.

One final point: The Griffiths second sum rule ap-
pears to be relatively unaffected by any of these com-
plications. The classical theory predicts that

y
—1/2+ y

—t/2 y
—t/2 21/29 (g n)

Converting (ll) to the second sum for experimental
intensities or correlation lengths with the proportional-
ity factors of (2) merely adds to (11) terms in (5 n )
and higher; there are no convenient exact cancellations
as in the first sum. Our experimental measurements,
like those of Kim et ai. , indicate that (11) is satisfied
within reasonable experimental error.
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