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Low reflectivity of stimulated Brillouin scattering is shown to result from wave-interaction in-
coherency caused by the ion sound-wave nonlinearity. The Brillouin reflectivity is numerically
found to display a chaotic time evolution at laser fluxes below those at which ion sound-wave har-
monic generation takes place. At these fluxes, the scattered light exhibits a spiky frequency spec-

trum. Scaling laws for the reflectivity are given.
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We investigate the reflectivity caused by stimulated
Brillouin backscattering (SBS) in long-scale-length
plasmas, a problem which is now of concern for laser-
fusion experiments. Nonlinear theories that treat
pump depletion as the unique saturation mechanism
predict a negligible amount of laser light reaching the
critical surface, provided that the characteristic length
of the plasma exceeds a critical length! L.. However,
it has been pointed out by Kruer? that high reflectivity
may give rise to a level of ion sound-wave (ISW) fluc-
tuations (8n/n) for which the following nonlinear
kinetic effects on the ion population provide a natural
mechanism for reduction of the reflectivity: Namely,
there exists a substantial ion heating caused by ion
trapping and ISW breaking, and the latter ion heating,
in turn, reduces the reflectivity due to SBS occurring
on heavily damped ion sound waves. Such nonlinear
kinetic effects take place only if 871/ n exceeds the criti-
cal value (8n/n)g at which ISW breaking occurs be-
cause of the trapping of a large part of the cold back-
ground ions. Denoting by (8n/n) g, the level of ISW
fluctuations corresponding to a reflectivity R, one may
estimate the critical flux ¢x above which these non-
linear kinetic effects take place by writing (8n/n)g
= (8n/n), and, by using the conservation of fluxes,
one obtains

Ox=55RIT,(n/nIN"2(8n/n)}%,

where A and 7, denote the laser wavelength and the
electron temperature in units of micrometers and Ki-
loelectronvolts, respectively; the subscript K stands for
““kinetic,”” ®x is expressed in units of 10'* watts per
square centimeter, and n/n, denotes the ratio of the
plasma density to the critical density. For ZT,/T,
=10, (8n/n) g has been estimated® to be of the order
of 0.2, so that one has ®x =22R~'T,(n/n)\"% T,
and Ze are the ion temperature and charge, respective-
ly. We define as ‘‘strongly nonlinear’’ the regime
® > & for which the above nonlinear kinetic effects
may be invoked to reduce the reflectivity.
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In this Letter, we address the question of SBS in the
opposite regime ® < ®g, which we define as the re-
gime of ‘‘moderate flux,”’” where the nonlinear satura-
tion mechanisms are necessarily of the fluid type. In
this regime, the relevant experiments® exhibit one or
several of the following characteristic behaviors: (i) a
reflectivity lower than predicted by standard theory,
(ii) a chaotic or burstlike SBS emission, and (iii) a
large variability of the backscattered light spectrum.
Fluid-type ion nonlinearity coupled with ISW harmon-
ic generation is usually invoked® to explain the low re-
flectivity and the spectrum; the ion nonlinearity is
then thought of as a mechanism for energy transfer
into the dissipative domain of short wavelengths. By
contrast, we show numerically that a significant reflec-
tivity reduction follows from a loss of coherency of the
SBS interaction, which in turn results from the ion
nonlinearity. The central point is that the reflectivity
reduction is numerically found to exist even in the ab-
sence of any wave damping and occurs at a critical
threshold ®,,. for the laser flux ® corresponding to a
very weak ion nonlinearity for which ISW harmonic
emission is negligible; hence the reduction of the re-
flectivity cannot be attributed in this regime to any
linear or nonlinear damping. We conclude that it is
simply a direct consequence of the loss of coherency
for SBS interaction and that it should be therefore
decoupled from the mechanism of ISW harmonic gen-
eration.

In order to investigate the role of the ISW non-
linearity, we have studied SBS in a homogeneous plas-
ma at rest. Our system may be described by the fol-
lowing set of mode-coupling equations:

(8,+ cd,)ag= —yoaas, (1a)
(8,— c0,)a,=vypapay, (1b)
(8,+ C, 8, + ialasl?) ag=yoapaf, (1c)

where ag, a;, and a, respectively denote the slowly
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varying envelope, in dimensionless units, of the pump
wave, scattered wave, and ISW. The boundary condi-
tions are a¢(0,7) =1 and a,(L,t) = a,(0,£) =0, where
L is the length of the plasma slab, vy is the usual con-
vective growth rate for SBS, and c and C; are the light
and sound-wave group velocities, respectively. The
standard coherent mode-coupling equations are
recovered with a=0; the nonlinear frequency shift
Aw, = alas|?, which accounts for the fluid-type ion
nonlinearity, may be derived by using the so-called
reductive method® applied to the Korteweg—de Vries
equation for the ion sound wave. The validity domain
for reducing the Korteweg—de Vries nonlinearity to a
nonlinear frequency shift is given by the condition
(3n/n)gr << (8n/n) y=3kI\},, where k, is the wave
number of the ISW, Ap, is the Debye length, and the
subscript H stands for ‘“harmonic.’”” If one remembers
that ISW steepening and strong harmonic generation
occur in the opposite case 8n/n >> 3k A}, one sees
that the validity domain for Eqgs. (1) corresponds to
the regime in which harmonic generation is negligible.
More precisely, in this regime, the amplitude of the
first harmonic goes like the square of the fundamental
so that it is small enough to be treated perturbatively
and to give rise to a nonlinear frequency shift. The re-
gime of moderate flux (8n/n)z < (8n/n)k can there-
fore be subdivided into two subregimes: (i) The
subregime that we define as ‘‘weakly nonlinear,”
where the inequality (8n/n)g < (8n/n)y is satisfied;
in this subregime, the ion nonlinearity is weak enough
to be reduced to a nonlinear frequency shift, the ISW
harmonic generation is negligible, and SBS is correctly
described by Egs. (1). (ii) The subregime of “‘inter-
mediate nonlinearity,” (8n/n)y < (8n/n)g < (8n/
n)k; the inequality (8n/n)y < (8n/n)g corresponds
to the existence of a strong ISW harmonic generation,
i.e., the harmonic amplitudes are of the same order of
magnitude as the fundamental; the second inequality
(8n/n) g < (8n/n)g is the condition for the ion non-
linearity to be of the fluid type, i.e., for the absence of
strong nonlinear kinetic effects. Writing (8n/n)g
= (8n/n)y, one obtains the critical flux &y below
which SBS can be described by Egs. (1):

®y=32x10"2R" Y n/n) T\ "2.

We now concentrate on the weakly nonlinear regime
® < ®4. Equations (1) may be written in a dimension-
less form so that SBS is entirely characterized in the
weakly nonlinear regime by only three parameters:
e=Cy/c, L/L.=Q/m)yoL/(cC)V?, and T =a/ajy
=a/dyo(Cs/c)¥?. The latter quantity I' will appear
further on to be the significant parameter regarding
the effect of the ISW nonlinearity upon SBS. Equa-
tions (1) have been solved numerically for various
values of the parameter I'; the solutions essentially
have two kinds of behavior depending upon the mag-

nitude of I'. For I < 1, the ISW nonlinearity modifies
the case I' =0 in an adiabatic manner, and no signifi-
cant change is observed regarding the reflectivity.
This result may be understood on physical grounds by
observing that the inequality I' < 1 corresponds to the
condition that the nonlinear frequency shift remains
smaller than the mode growth rate 2yo(Cy/c)"? and is
therefore negligible. In the opposite case I' > 1 and
for L > L., the nonlinear frequency shift becomes
large enough to destabilize the steady-state solution,
and the system is numerically observed to enter into
an incoherent regime. The parameter I' may easily be
related to the incident flux & according to
I'=(d/d,, )2, where &, is thus the critical flux
above which the ISW nonlinearity gives rise to an in-
coherent SBS interaction. One obtains

®;c=3.2x10"2(n/n.) TN ~? (2)

with the same units as before.

Figure 1 shows the time history of the reflectivity
R(L,)=|a;(x=0,r)|? and the frequency spectrum of
the backscattered light a; corresponding to the follow-
ing set of parameters: e=7x10"% I'=4, and L/L,
= 6. The abscissa variables of Figs. 1(a) and 1(b) are
vo(8) and (w—w;)/7yy, respectively; w; denotes the
natural frequency of the backscattered light, namely,
w] = wy— wg, Where wg and w;= k;C are the frequen-
cies of the laser and of the ISW, respectively. One
may first observe that in such an incoherent regime
the reflectivity R displays a burstlike behavior in time.
Concerning now the spectrum, the nonlinear frequen-
cy shift gives rise to an additional red shift dw;, which
is found to be typically of the same order of magnitude
as the total width of the spectrum Aw;. Another
characteristic feature of the spectrum is the presence
of peaks that are also observed in some experiments.*
For completeness, we must say that reflective boun-
daries have already been proposed’-® as a possible ori-
gin of SBS incoherent interaction; in particular, spiky
spectra have been obtained by Randall and Albritton®
from numerical computations with reflective boun-
daries and a«=0. Clearly, the ISW nonlinearity also
gives rise to a spiky spectrum whose peak separation is
smaller than w; in the regime &;,. < ® < ®,. We are
thus led to the same conclusions as those formulated
by the latter authors; i.e., a diagnosis of the tempera-
ture based upon ISW harmonic generation to explain
the spectrum would lead erroneously to an electron
temperature well below the actual one. For a quantita-
tive comparison of our results with experimental data,
it is convenient to convert the dimensionless frequen-
cy (w—w;)/yo of Fig. 1(b) into the ratio (w—w;)/w;
according to the formula

w— W)
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FIG. 1. (a) Time history of the backscattered light showing chaoticlike behavior. (b) Calculated frequency spectrum of the
backscattered light exhibiting characteristic peaks. The parameters are e=7x 1074 I'=4, and L/L,=6.

Ze and M;= Am, denote the ionic charge and mass,
respectively. For n/n,=0.18 and A/Z =2, the param-
eters that we have chosen for Fig. 1 correspond to
T,=1keV and ®A2=10"* W um?/cm?.

We now consider_the scaling laws of the time-
averaged reflectivity R (L) and transmissivity 7(L) in
the regime of weak nonlinearity and of incoherent SBS
interaction as defined by the inequalities &, < P
< ®y. We have numerically found that the quantities
R (L) and T(L) can be fitted in the unstable regimes
L > L, by the following law:

R(L)=1-T(L)=1-TY3(L,/L). (3)

The agreement is fairly good provided that L exceeds a
few L., as can be seen in Fig. 2: The full curve
represents R (L) as given by Eq..(3), and the dots
stand for the numerical results. The characteristic 1/L
dependence of R(L) has to be compared with the
standard case a«=I"=0 (the dashed curve) for which
R (L) increases exponentially from zero to unity for
L > L.. The parameters for the numerical results of
Fig. 2 are e=7x10"*and I' =4. The I''/3 dependence
of R(L) has been numerically tested on several de-
cades of variation of €. In physical units, we obtain
the expression R(L)=1—6.50"13(n/n,)-%\13
x L~ ! with the same units as before.

Let us now discuss the limitation of our results and
the connection with related works: (i) First concern-
ing the effect of wave damping, we have numerically
checked that the previous results are not modified as
long as SBS remains in the regime of absolute instabili-
ty. In the opposite case, we still observe a reduction of
the reflectivity caused by the ISW nonlinearity when-
ever the nonlinear frequency shift Aw, exceeds the
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linear damping v of the ISW. (ii) Second, our results
strictly apply to the weakly nonlinear regime @ < .
However, we have observed that the more ® exceeds
the incoherent threshold ®;,., the more the system
behaves in a chaotic way. For this reason, it seems
justified to conjecture that incoherency effects are still
responsible for the reflectivity reduction in the inter-
mediate regime @, < ® < Oy, where there exists a
strong ISW harmonic generation. This conjecture
seems to be well supported by the simulations of Heik-
kinen, Karttunen, and Salomaa,’ which display, in the
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FIG. 2. Averaged reflectivity R as a function of the nor-
malized length of the plasma L/L.. The solid curve
represents the scaling law given by Eq. (3); the dots stand
for the numerical results; the dashed curve corresponds to
the case a =0 and is given for comparison with the standard
steady-state solution.
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regime of harmonic generation, a chaoticlike behavior
for SBS and a lowered average reflectivity. (iii) Lastly,
in the strongly nonlinear regime ® > ®g, nonlinear
kinetic effects take place and give rise to additional ef-
fects such as a nonlinear ISW damping; again experi-
ments done by Clayton and co-workers,!? as well as
numerical simulations done by Forslund, Kindel, and
Lindman,!! still exhibit a burstlike behavior for SBS.
Therefore, in this regime the reflectivity reduction
cannot be solely attributed to the increase of the ISW
damping, but must also in part result from the intrinsi-
cally incoherent nature of SBS interaction caused by
the nonlinearity of the ion sound wave.

Two of the authors (M.C. and D.P.) would like to
thank C. E. Clayton and D. W. Forslund for valuable
discussions; interest and advice from D. E. DuBois,
B. Kronast, C. Labaune, A. B. Langdon, and C. R.
Meyniuk are also acknowledged by one of the authors
(D.P.). Three of the authors (G.L., R.P., and D.P.)
are members of Groupe de Recherche du Centre Na-
tional de la Recherche Scientifique No. 48.

IN. W. Kroll, J. Appl. Phys. 36, 34 (1965); D. Pesme,
G. Laval, and R. Pellat, Phys. Rev. Lett. 31, 203 (1973).

2W. L. Kruer, Phys. Fluids 23, 1273 (1980).

3]J. M. Dawson, W. L. Kruer, and B. Rosen, in Dynamics
of lonized Gases, edited by M. Lighthill, I. Imai, and H. Sato
(Univ. of Tokyo Press, Tokyo, 1973), p. 47.

4R. E. Turner and L. M. Goldman, Phys. Fluids 24, 184
(1981); H. A. Baldis and C. J. Walsh, Phys. Fluids 26, 3426
(1983); B. Gellert and B. Kronast, Appl. Phys. B 33, 29
(1984); C. Labaune er al., Rapport d’activité du GILM, 1983
(unpublished), p. 43.

5V. P. Silin and V. T. Tikhonchuk, Pis’ma Zh. Eksp. Teor.
Fiz. 34, 385 (1981) [JETP Lett. 34, 365 (1981)1; S. J. Kart-
tunen and R. R. E. Salomaa, Phys. Lett. 88A, 350 (1982);
B. Gellert, Phys. Lett. 96A, 16 (1983).

6Y. H. Ichikawa, T. Imamura, and T. Tanuiti, J. Phys. Soc.
Jpn. 33, 189 (1972).

7C. Montes and J. Peyraud, Proc. Soc. Photo Opt. In-
strum. Eng. 288, 199 (1981); K. Sauer and K. Baumgirtel,
Phys. Rev. Lett. 52, 1001 (1984).

8C. J. Randall and J. R. Albritton, Phys. Rev. Lett. 52,
1887 (1984).

9J. A. Heikkinen, S. S. Karttunen, and R. R. E. Salomaa,
Phys. Lett. 101A, 217 (1984).

10C. E. Clayton, C. Joshi, and F. F. Chen, Phys. Rev. Lett.
51, 1656 (1983); M. J. Herbst, C. E. Clayton, and F. F.
Chen, Phys. Rev. Lett. 43, 1591 (1979).

11D, W. Forslund, J. M. Kindel, and E. L. Lindman, Phys.
Fluids 18, 1017 (1975).

2233



