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Invasion Percolation in an Etched Network: Measurement of a Fractal Dimension
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A wetting fluid is displaced at very low flow rate by a nonwetting fluid in a 250000-duct, trans-
parent, etched network. The structure formed by the injected fluid is ramified and the scale invari-
ance is described by a measured fractal dimension 1.80 (D ( 1.83. This value agrees with theoret-
ical results of invasion percolation with trapping.

PACS numbers: 47.55.Mh, 05.70.Jk, 68.10.Cr

Recently, percolation theory has been used to
describe the displacement of one fluid by another in
porous media when capillary forces are very strong
compared to viscous forces. ' In this paper, we
present experimental support for this theory by
measuring the fractal dimension of a nonwetting in-
jected cluster in a two-dimensional etched network.

All the displacement mechanisms are linked to capil-
lary forces and randomness due to the different sizes
of pores in a porous medium. Generally speaking,
when one fluid (say oil) is slowly displacing another
nonmiscible fluid (say water) in a capillary tube, the
fluid for which the contact angle 0 (between the tube
and the meniscus) is smaller than m/2 is called the
"wetting fluid", the other one is the "nonwetting
fluid. "

Capillary forces prevent the nonwetting fluid from
spontaneously entering a porous medium. It can only
enter a throat (diameter Do) when the pressure
exceeds the pressure in the wetting fluid by a value P,
called capillary pressure, linked to the surface tension

by the Laplace law P=4ycos(0)/Do. Assuming
that the porous medium can be described by a network
of pores (nodes or intersections of the lattice) con-
nected by ducts (bonds), from a statistical point of
view a duct with D ) Do is an "active" or "conduc-
tive" bond and a duct with D & Do is an inactive
bond. The fraction p of active bonds can easily be de-
duced from the throat size distribution. 2

At a given pressure P, the injected fluid invades all
the percolation clusters connected to the injection
face; this mechanism has been called invasion percola-
tion. 4 8 During the displacement, the wetting phase is
trapped in the network when the invading nonwetting
fluid breaks the continuous path toward the exit. 2 5

Computer simulations of this invasion percolation with
trapping4 6 using two-dimensional networks (size up to
100X 100) show a fractal9 behavior at the percolation
threshold (breakthrough) and also at the end of dis-

placement when all the bonds are active (the capillary
pressure is suff'icient to allow the displacement in the
smallest ducts). For instance, the fraction of invaded
ducts (saturation 5) in a L & L network decreases with
the size L, as

The fractal dimension D is 1.82 in a two-dimensional
network4 and the difference with ordinary percolation
(D = 1.89) seems significant.

We have developed a molding technique' using a
transparent resin and a photographically etched mold
to study two-phase flow in porous media and directly
measure the structure of the injected cluster. The
cross section of each duct of the etched network is rec-
tangular with a constant depth x = 1 mm and a width d
which varies from throat to throat (generally d )0.1

mm). For this study we used a very large network
(300& 300 mm) containing 250000 ducts with seven
classes of width d at random locations. In previous
work, we have shown that the structure of the inject-
ed cluster is independent of the pore-size distribution,
so the size distribution is broadened around 50O/o

(Table I) to get better accuracy near the bond percola-
tion threshold (0.5 for a square network).

The wetting fluid is paraffin oil (viscosity p, =20 cP
or 0.020 S.I.), the nonwetting fluid is air (p, =0.02
cP), the contact angle is zero, and the surface tension
y = 20 dyne/cm (0.020 S.I.). The nonwetting fluid is
injected by slowly decreasing the pressure in the wet-
ting fluid (constant level container) and different ex-
periments are run from 1 to 96 h. This time scale is
characterized by the capillary number (calculated for
the wetting fluid):

W„=qp, /Xy, (2)

where X is the cross-section area of the network and q
the mean flow rate of the injected fluid.

For a given capillary number, the experiments are
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TABLE I. Proportion and width of the different classes of
ducts in the network.

Class 2 3 4 5 6

Width (mm) 0.27 0.31 0.35 0.39 0.43 0.47 0.51
Fraction (%) 45 2 2 2 2 2 45

reproducible and the structure of the injected cluster
(Fig. 1) qualitatively agrees with computer simula-
tions. During the displacement, the nonwet ting
fluid presents very thin and dendritic fingers, and, at
the end of the experiment, the cluster size of the
trapped phase varies from the pore scale (Fig. 2) to the
network scale (large clusters in black, Fig. 1).

So far there have been very few experimental stud-
ies of real fractal systems. Some measurements are
based upon a relationship between a physical property
and fractal dimension: surface roughness by gas ad-
sorption with different sizes of molecules" or electri-
cal transfer'; structure of aggregates by x-ray or light
diffraction. '3 t4 More often, the fractal dimension of
clusters is deduced from photographs by plotting the
number of particles versus the size of a large number
of clusters, ts '6 or using a density-density correlation
function when it is possible to digitize the photo-
graphs 15, 17, 18

In our experiments, we get only one cluster for each
run and digitization is quite impossible because of the

N~L (3)

At the end of the displacement, the variation of N as a
function of L (measured in units of the mesh size) for

black meniscus which surrounds the nonwetting phase,
in each pore (Fig. 2). Consequently, we have to use a
simple but laborious technique: From an origin 0
roughly at the center of the network, we count the
number N of invaded ducts in a L && L square centered
in O. A duct is counted only when the nonwetting
fluid has invaded the duct and also the pore (intersec-
tion) next to this duct (ducts where the meniscus
remains at one or both ends are not counted).

When the capillary number decreases, the final sat-
uration S increases (Fig. 3). This phenomenon is due
to the possibility for a fraction of the wetting fluid to
"escape" by flowing along the roughness of the pores
when trapping occurs. ' 2o This mechanism seems not
to be relevant at large scale and does not change the
fractal dimension of the cluster.

By replacing the saturation S by N/(L && L) in Eq.
(I),

FIG. 1. Displacement of the wetting fluid (black) by the
nonwetting fluid injected on the left-hand side of the net-
work. On the right-hand side, a semipermeable membrane
prevents the nonwetting fluid from flowing outside.

FIG. 2. Close-up of the situation of the wetting fluid
(black) and nonwetting fluid (white) in the ducts of the
etched network. The distance between two nodes is about
0.8 mm.
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FIG, 3. The mean saturation of the injected fluid in the

central zone of the network (125x 125) as a function of the
capillary number (calculated for the wetting fluid).
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C(r) = Xp(r') p(r'+ r). (4)

The density p(r) is defined to be 1 for the occupied
bonds and 0 for the others. But instead of averaging
on all the values of r', our method uses only one ori-
gin 0 (r'= 0), which leads to a kind of radius of gyra-
tion R (defined in a square):

N(R) =„(p(0)p(r))d r. (5)

This equation shows that the origin must be in the
cluster [p(0) =1]. This condition is satisfied for all
the experiments except that at the highest capillary
number where a large cluster of wetting fluid remains
in the central part of the network. This explains the
behavior of this experiment. Thus the main problem
is not the finite size of the network (for instance, the
number of filled ducts is of the same order as the
number of particles used in computer studies of
diffusion-limited aggregation") but the difficulty of

different capillary numbers is plotted on a log-log scale
in Fig. 4. The curves are linear when the size L is
greater than about 70 meshes and a least-squares fit
for the slope leads to D =1.83 +0.01 for the three
slowest displacements (N„=3.3x10 s, 6.5x10
1.2x10 7) and D=1.80 for N„=6.2 lx0 . These
measurements are in good agreement with the theoret-
ical value D = 1.82.

The highest capillary number (N„=1.5 x 10 6)

leads to a different value (D & 2) and this experiment
reveals the weakness of the method used to calculate
the fractal dimension. Generally, an accurate method
consists in plotting the density-density correlation
function C(r) versus the distance r separating the
bonds 2'
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FIG. 4. Number of filled ducts vs size of the L && L square
for different capillary numbers. The slopes 1.83 and 1.80
are least-squares fit to the data. (The data for
N„=3.3 & 10 are exactly the same as for N„=6.5 & 10
and are not shown in this figure. )

measuring the fractal dimension of a cluster obtained
by injection through a side of the network. Conse-
quently, it seems possible to improve the accuracy of
our experiments by injecting the nonwetting fluid
through one point in the central part of the network.

We conclude that experimental .displacements of a
wetting fluid by a nonwetting fluid in a two-
dimensional random network are consistent with com-
puter simulations of invasion percolation. In particu-
lar, the measured fractal dimension of the injected
cluster is closed to the simulation value of 1.82. While
it is true that the range of L values used is less than
one decade, this is also the case for the computer ex-
periments, the latter being limited by the time re-
quired at each step to check if part of the displaced
fluid has been trapped. Thus, we cannot strictly ex-
clude the possibility that, in both the experiment and
simulation, the fractal dimension should really be the
same as the value 1.89 for classical percolation.
Nevertheless, these experiments do show that the sat-
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uration is not "homogeneous" at the scale of the net-
work and that this result is strongly linked to capillary
effects.
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