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Bifurcation in Degenerate Four-Wave Mixing in Liquid Suspensions
of Microspheres
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We examine phase conjugation in liquid suspensions of microparticles in the saturation limit. If
the polarizations of the pump waves are orthogonal, new states should appear discontinuously in a
pairwise fashion which are stable at the bifurcation point. These states correspond to different in-
tensities of the conjugate and amplified probe waves. Analysis indicates that this effect should be
experimentally accessible in the microwave region utilizing 10-p,m microspheres.

PACS numbers: 42.65.—k, 05.45. +b

Recently, phase conjugation has attracted consider-
able interest with numerous publications discussing
the fundamental and technological implications of this
effect. ' Here we examine degenerate four-wave mix-
ing in liquid suspensions of microspheres operating in
the saturation regime and predict the existence of nov-
el nonlinear behavior. Specifically, if the polarizations
of the two pump beams are orthogonal, then in this re-
gime feedback in the four-wave mixing process itself
should be sufficient that the active medium will sup-
port a collection of different states for the same values
of system parameters. These different states are dis-
tinguishable from each other by the intensity of the
conjugate and exiting probe waves and, on a more mi-
croscopic level, correspond to different spatial distribu-
tions of microparticles. More precisely, we predict that
as the value of KL increases, where K is the four-wave
mixing coefficient and L is the interaction length, the
systems exhibit bifurcation in the sense that new states
appear in pairs for sufficient increases in KL. Further,
these new states arise discontinuously with nonzero
values of the conjugate wave; the precise details
depend on the specific material characteristics of the
active medium. In addition, stability analysis indicates
that these new states are stable, at least in the immedi-
ate vicinity of the bifurcation point. Finally, we show
that bifurcation in degenerate four-wave mixing
should occur in general whenever the active medium
is operating in the saturation regime with the polariza-
tions of the two pump beams orthogonal.

In previous research, we examined degenerate
four-wave mixing in liquid suspensions of micro-
spheres in the presence of weak pump waves. For
these media, electrostrictive forces modulate the mi-
croparticle density such that two orthogonal spatial
gratings are created. Coherent scattering of pump ra-
diation from these two gratings gives rise to the forma-
tion of a conjugate wave, as well as to amplification of

the probe wave. To describe the nonlinear electro-
dynamics of such media, one uses the Maxwell equa-
tions for the radiation field coupled to the Planck-
Nernst equation for the microparticle density. Specif-
ically,

a n(r, t)

= DU'n(r, t) — V' [F(r, t) n(r, t)],

F(r, t) = —,' o.V (E'—(r,t) )„, (2)

'7' —, , E(r, t) =, , P(r, t),
1 8 4m.

v rlt c Bt

where n(r, t) is the microsphere density, D the dif-
fusion coefficient for microspheres in a viscous liquid,
F(r, t) the electrostrictive force which drives the mi-
croparticles, and n the polarizability of a sphere in an
electromagnetic field whose wavelength is long com-
pared to the particle size; E(r, t ) denotes the total elec-
tromagnetic field irradiating the suspension, v the
velocity of light in the medium; and P(r, t) is the non-
linear polarization of the medium. Equation (3) as-
sumes that losses are negligible, a situation that can be
obtained by use of a nonabsorbing suspension whose
Rayleigh scattering length is much greater than any
propagation lengths that appear in the problem. Final-
ly, the angular brackets in Eq. (2) denote a temporal
average.

The electromagnetic field can be written convenient-
ly as

E(r, t) = —,
' X,. e, (r, t)e,

x exp[i(tot —k r, —@,) j+c.c., (4)

where j= (1,2) refers to the pump waves, j= p, the
probe field, and j= c, the conjugate wave. Here
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e, (r, t) is the complex amplitude of the jth field, e,.
and k~ the corresponding polarization and wave vector.
For our purposes, we shall take the pump amplitudes
to be equal and undepleted so that e& = ~2—= Eo, and if
e~ is taken to be parallel to et, then e, will be parallel
to e2, since et e2 = 0. For the situations considered
here, we anticipate pump powers many orders of mag-
nitude greater than either the exiting probe or the con-
jugate wave. Thus the pump waves will transfer only a
small fraction of their power to either the probe or the
conjugate wave and thus can be treated within the
nondepleted pump approximation. We take k~
= —k2 ——K, k~ = —k, =Q, and note that for this
choice of pump polarization, only one microparticle
grating will be created, i.e. , the one whose spacing
A = 2m/((K —Q) ~

= 27r/(q(. For convenience, we
scale the probe and conjugate waves to the initial probe
field e (0), i.e. , e, (r, t) —= e~(0) u(r, t) and e~(r, t)
=a~(0 v(r, t). Finally, we set @~=$2=0 and
$~= —@,—=4, the common phase of the conjugate
and probe waves.

Inserting Eq. (4) into Eqs. (1)—(3), and decompos-
ing the microsphere density into various grating orders
m

derivatives are set equal to zero, Eq. (6) reduces to the
indicial equation for the Bessel functions of imaginary
argument. In particular, the normalized microparticle
density for the grating of order l is6

1((2PA )
10(2pA)

(8)

A =sec[KL [2F(2pA)]). (9)

The efficiency for generating conjugate waves is

g = tan2 (K L [2F(2pA) ]), and the probe amplification
is g = sec [KL [2F(2pA ) ]), which are analogous to the
weak-field result, except that the four-wave mixing
coefficient K is replaced by its saturated value,

and one can show from Eq. (5) that n (r) is given by
the Maxwell-Boltzmann distribution for a collection of
microparticles in an electrostrictive potential U(r)
=nE~~(0)A cos(q r —4+0). Next, an examination
of Eq. (7) reveals that if mt is given by Eq. (8), A is in-
dependent of position, and 0(z) =Ho+2KLF(2pA)z,
where F(x) —= It (x)/xlo(x) and 00 is a constant. If we
introduce the standard boundary conditions, 7 the 3
satisfies the transcendental equation

n(r, t) = —X mt(t)exp[il(q r —4+0)], (5)
V (= —oo

1,(2PA )
PA10(2PA )

(10)

with N/V the microsphere density in the absence of
external fields, we have

m(+ ilm(0 =—/2

+D

l
m(+ PA (m(, m, +, ), —

7 D

where mt= m'
t if n is to be real, rD= (Dq ) ' is the

time needed for a microparticle5 to diffuse a distance
1/q, P = nEpe~(0)/4kT is the saturation parameter,
and (u+ v) = —A exp[i']. We can define a satura-
tion field F., by P= Ee~(0)/E, 2, so that E, —= 2(kT/
n)'t2. Typical values at room temperatures for 10-p, m
spheres are on the order of 1Q 2 Vlcm, corresponding
to powers of 0.1 Wlcm2. Since the response time of
the microparticles is viscous limited, the radiation field
will follow the motion of the microspheres adiabatical-
ly. Thus, within the slowly varying phase and ampli-
tude approximation,

0

Bz
[A exp(i0)] = 'KLmt exp(i0),—

2
(7)

where z is a dimensionless coordinate in the direction
of propagation which is scaled to the interaction length
L, and K —= 7r 0n(N/ V)nE2//kT. Note that the conju-
gate and probe waves are only directly coupled to the
first-order grating. Furthermore, phase mismatch as-
sures that only negligible radiation will be scattered
from the higher-order gratings.

To demonstrate bifurcation, we first extract the
steady-state solutions of Eqs. (5) —(7) . If all time

Note that different values of A correspond to different
microparticle densities through Eq. (8).

Before presenting numerical solutions of Eq. (9), we
can obtain some insight into bifurcation by considering
the limit PA » 1, where Eq. (9) reduces to
B=a-cosB, with B=o-/A and a-=(KL/p). Clearly,
this exhibits multiple solutions so long as cr » l.
The larger the value of o-, the greater are the number
of allowed solutions. This feature of bifurcation is de-
picted in Fig. 1, which displays A, the normalized
probe beam exiting from the sample, as a function of
KL for P = Q. l. An examination of this figure reveals
that as KL increases, new solutions appear discontinu-
ously in pairs. Initially, these solutions exhibit a
strong dependence on KL, but this saturates rapidly to
a linear dependence. Note, too, that the phases of
each pair of new solutions differ by Tr from the previ-
ous set. Since (=A2 and q = A —1, the saturated
probe amplification and conjugate-wave efficiency all
eventually exhibit a quadratic dependence on KL Fur-
ther examination of Fig. 1 reveals that bifurcation oc-
curs at KL = 2.2, 5.2, 9.2, 11.5, etc. , corresponding to
a-=22, 52, 92, 115, etc. To illuminate the role of the
saturation parameter, we have depicted the quantity
A

' —= A P in Fig. 2. An examination of this figure re-
veals that as P increases, i.e. , as a. decreases, solutions
are lost, as implied by the discussion above. Note that
as long as the various solutions exist, they depend on
I/P. To understand why, we note that since A' is vir-
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I, (2PAp)
(2 )+Pi, )+ i(, ) (»a)

0 zz, r) =2 Lr(2P~ ii) z+ qr (z, r), (lib)

W(zr) =W +p+ n(z, t). (11c)

rDP, , = I P, i+ IPA ( — i+io Pi i Pi+i)—
r

, 1(2PW, )
Ip(2PAo) Ao

o n zr) (12a)

rDvi= l vi+ lPA v~o(vi i vi+ i)— (»b)

r)n 1——KLVIi (12c)

KL Ii (2pA o)

2Ap Io(2PA )
Jc Lp i . (12d)

In the vicin'inity of the bifurcatioi ul'catiorl point, PA o(& 1 and

Here Ae Ap is any of the allowed
of th bifin i urcation po

esimal uquantities wh' h

an Planck-Nernst equations
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rDvt(p, t) + l'v, (p, t)

It (2PA o) ~L ~L
Io(2PA o) 2A op 2A op

vt rD. (13b)

where p is the Fourier transform of the dimensionless
spatial coordinate z. We may test for stability by as-
suming that p, I, vI vary with time as e "so that the
solution in question is stable if e & 0. Carrying this
out, we find that e(p) has two solutions:

e+(p) =
t

1
1

po

(p2+ p 2 )1/2 (14)

where pa= trL/230. —Thus, in the vicinity of the bifur-
cation point, all solutions are stable. However, the
smaller p, i.e., the longer the wavelength of the fluc-
tuation, the less stable is the solution. This feature is
quite reasonable since the longer the wavelength of
the fluctuation, the greater are the numbers of micro-
particles involved; hence the longer the time needed
to reestablish equilibrium. Note that the most stable
solutions occur for the smallest values of the nonlinear
parameter and the largest values of the exiting probe

Eqs. (12) reduce to

, Ii(2PW, )
AD@, t(p, t) + l p, t(p, t) = il v1(p, t), (13a)

wave, i.e. , the most stable solutions are those which
occur first.

Finally, we demonstrate that bifurcation is not limit-
ed, at least in principle, to just liquid suspensions of
rnicrospheres. This can be done most readily by ob-
serving that when losses are negligible, typical non-
linear susceptibilities scale as (E,/E) = E, /Eo~~ (0)2
for E » E„ the saturation field. However, this is
precisely how suspensions of microspheres behave in
the large-field limit; in particular see Eq. (10), where
the calculations regarding the appearance of bifurca-
tion solutions for suspensions should apply to other ac-
tive media.

~See Optical Phase Conjugators, edited by R. A. Fisher
(Academic, New York, 1983), and references therein.
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