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Exact Renormalization for the Gross-Neveu Model of Quantum Fields
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We show that the Wilson renormalization-group flow of effective Lagrangians in fermionic
models can be explicitly controlled using convergent perturbation expansions. A simple rigorous
construction of two-dimensional asymptotically free field theories (the Gross-Neveu models)
results.
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It is an old observation that in QED, for a finite ul-
traviolet (uv) and infrared (ir) cutoff, the standard
perturbation expansion (PE) is a convergent series.
This result easily extends to an arbitrary purely fer-
mionic (local) interaction in sharp contrast with boson-
ic theories where even in the presence of cutoffs, the
PE is only asymptotic, its convergence being obstruct-
ed by instantons. 2 The simplicity of fermions is due to
the Pauli principle: With uv cutoff there is effectively
a finite number of modes per unit volume which can
be only singly excited, and hence there is no local
number divergence in contrast to bosons. However, as
the uv cutoff is removed and renormalization per-
formed, this property seems to be lost. Indeed, in re-
normalizable models the divergence of the renormal-
ized PE seems to emerge as signaled by the renor-
malon singularities of its Borel transform. 3 It is due to
the factorial growth of the amplitudes of certain
graphs.

In the present paper, we describe an approach to the
renormalization of fermionic theories which allows
rigorous construction of the renormalizable asymptoti-
cally free models by using only convergent expan-
sions. 4 We show that for the Gross-Neveu models in
two dimensions, s once the uv cutoff is successively

t

lowered using Wilson's renormalization-group (RG)

idea, 6 the resulting effective Lagrangians may be com-
puted from each other by means of convergent PE's
and are given by convergent power series in the fields.
Thus we are able to evaluate the full Wilson RG flow
in the space of all actions close to the massless Gauss-
ian one. The analysis extends to the Schwinger func-
tions providing a rigorous construction of quantum
field theory which is renormalizable and asymptotically
free but not superrenormalizable.

We take the bare Euclidean action (Q'=Q or Q)

S(q', A) =S,(q', A)+S(q', A),

where

(2)

with the free cutoff propagator in the momentum
space

(18~) '(p) = (p/p') exp [ —p'/A'],

and

S (Q, A) = z (A) J Qi d$ —g (A) Jt (QQ) 2.

Q' carries N ) 1 flavors and (1) has the U(N) sym-
metry. 7 The effective low-momentum actions are de-
fined by integrating out fluctuations with momenta
between A and A:

exp [ —SA" (P', A ) ] = const && exp — pi BAp J exp [ —S(P'+ (', A) —(( I & '
I () l D( D(,

where in the momentum space

~ (p) = (p/p2) (exp[ —p2/A2] —exp[ —p2/A 2]).

In the standard perturbative approach one expands in the renormalized coupling g

p=0
(7)

and the perturbative renormalization theory tells us that o-A(Q', A) have limits as A ~ if g(A) and z(A) are
chosen appropriately as a formal power series in g. The resulting expansion (7) is expected to diverge, however.
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What we show is that, provided the bare couplings are chosen as

1 1 A P3 A= ——P2ln —+ ln 1 —P2gln —,
/32

z(A) = —(y2/p2) g(A),

with g & 0 small and P2 ( 0, P3 and y2 being the standard coefficients of the perturbative P and y functions, then
for A ~ p, (P =P' or BP'),

OO m

SA ()t)', A) = X SA(x), . . . , x, A) J,[ji(x;)dx;,
m =2

where the series converges (see below what this means) uniformly in A and SA (x, A) has the limit A ~. Per-
turbatively, SA corresponds to all the graphs of (7) with m external legs and as a function of g has an expansion in
powers of g which becomes divergent as A

We obtain S~ in a different way, however. Instead of performing the full functional integral in (5) at once, we
follow the RG idea6 and reduce the cutoff little by little. Take L = O(1) and compute iteratively

S(A) St",tL(A) S'
2 (A) . . . S'" „,

with A = L "A. After the translation to dimensionless variables,

H~ "(y') =S "'(A"'q'(A )),
rewrite (5) as

(Q', A) =„'I Qi8 Q+ H - (Q' A)

where iteratively

H~~(q(P, A) = —ln) exp[ —Hz (L 't2&~( /L)+Z~) —(ZII' 'IZ) ]DZDZ+const

with

I (p) = (p/p') (exp[ —p'] —exp[ —L'p']).
Equation (14) is our RG transformation. It is computed perturbatively,

(13)

(14)

(15)

p= 1

(16)

where ( ) r denotes the connected expectation with the propagator I . For example, in the first step in (11) when
HArt= z(A) f )tii8$ —g(A) f (pp), (16) is given by the Feynman graphs with I lines. Note that such graphs are
finite: I has the uv and ir cutoffs. The point is that (16) not only is finite term by term but is a convergent expan
SlOn.

To see why this is so, consider again the first step, put for simplicity z(A) = 0, and compute

0'„') (O)= —X, „dx, . dx,(j[J[IZ(x)z(x))'),
=1 P. i=1

(17)

i.e. , the sum of vacuum graphs with propagator I . The number of graphs in the pth term of (17) is —(p!)2, i.e. ,
potentially dangerous: In a bosonic theory (17) would indeed diverge as g~p. . However, in the fermionic theory
cancellations occur. Consider, e.g. , a (disconnected) Green s function (ignore indices)

p
Z x; Zy; = —1" I x; —y ~i~ =detV x; —yj

i=1 n' i

which is bounded by (const) by the Hadamard inequality if x;,y~ are lattice points (I has exponential decay). This
should be contrasted with the bosonic p! behavior and is due to the exclusion principle: Only 2%x s may be
identical since Z (x) =0. Thus, many x, ,y~ are distant from each other and most terms in the sum in (18) are
very small, leading to the (const) behavior. For x;,y~ close but noncoinciding, a slightly more involved argument
is needed. In any case, the result is that the integral in (17) is bounded by volume times Ci'p! and (17) con-
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verges for g(A) small (as is our case). The latter remains true for Q ~0: (16) is also convergent (in an infinite
Grassmann algebra where P is a bounded operator). As a result

H~Ar(l (y') = gJ Hagi (x), . . . , x ) j Jy(x;)dx;, (19)

where each HA~L is given in terms of convergent PE and satisfies geometric bounds [see (28) below]. These
bounds guarantee in turn the convergence of (19) which is also crucial because it allows us to iterate the pro-
cedure.

To that end, we take HA of the form (19) and evaluate He~(L perturbatively as in (16). This will again be a
convergent PE. The only difference with the first step is that the Z integration involves arbitrary (nonlocal) ver-
tices now. What results is a recursion for the vertex kernels H of the form

H-] (x;) =L ~ H (Lx;)-+F(x;, {H ]), - (20)

where we have singled out the diagonal linear contribution [it would be just the whole linear one if we normal or-
dered the fields in (19) with respect to the free covariance]. Equation (20) is a nonlinear transformation in the
space of vertex kernels HA but Fis given in terms of a convergent power series in HA's. To see what kind of prop-
erties of H s survive the iteration of (20) note that after the first step Hz~L are given in terms of connected
graphs with I lines. The exponential falloff of I (x) leads to an approximate locality of H&~L (x;) up to exponen-
tially decaying tails. It is useful to introduce the notation

II H~ II = „dx2 dx~ i HA (x), . . . , x ) i exp [W(xt, . . . , x ) ], (21)

where W(xt, . . . , x ) is the length of the shortest tree graph on x~, . . . , x . Since higher m involve higher
powers of the coupling constant, II H~~L II has a geometric bound. For iteration, note the leading part of (20) has
a nice contractive property:

II L H (L ) II ~ L-~~ II H- II, (22)

i.e., all vertices but for m =2 and m =4 contract. Equation (22), of course, reflects the dimensionality of the cor-
responding operators. Hence, the idea is to separate the dangerous term, namely, the local parts of m =2, 4. In
fact, symmetries restrict the form of these local terms to those present in S(A) (this is how renormalizability
shows up in the present formulation). The picture we obtain is that there are two slowly varying couplings: zA of
the kinetic term and g~. The rest of H"" stabilizes and flows with these couplings:

HA (P') =z~~ &I'8& —gA(PP)'+ XJ H„-(x) js( )xd, ,x (23)

where for m =2 both fields carry derivatives and for
m =4 at least one of them. Thus the sum over m runs
over irrelevant operators whose kernels contract in the
leading approximation to the RG transformation.
Upon iteration of (23) new couplings zA&L, go&i and
new vertex kernels Hz&L arise which have convergent
PE's in terms of the ones of HA .

eff

The continuum limit is easy once we know the flow
of the couplings in the lowest orders. As is well
known, in the flow

dzp 3
A = —y2g- + O(g- ),A A (25)

z~ = —(&Jp, )g~+ O(g~ ),2

g~ = g(A) + o(g(A)'),
(26)

(27)

we obtain (24) (in the discrete form). The upshot is
that for all A, p, ~ A ~ A,

3 4
A =p2gA +p3gA + O(gA- )

dA
(24) and

II H A
I I
~ const x gz e, (28)

only the coefficients p2 and p3 are responsible for the
sensitive dependence on the initial conditions: Picking
the bare coupling as in (8), the physical one g will be
g+ o (g2) independent of the O(gA- ) in (24 . Thus—effour idea is to compute H A exactly to the third order
of gA and bound the remainder. Using the conver-
gence of the PE for the step A A/L and eliminating

where e is small for g small assuring the convergence
of (23). Equation (26) to (28) show that the low-
energy effective actions are bounded uniformly in the
cutoff A. It is then an easy matter to show that they
actually have the A ~ limit.

In summary, to demonstrate the nonperturbative re-
normalizability of the model we have to deal with con-
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vergent well-defined PE's for uv and ir cutoff func-
tional integrals (in particular, divergent diagrams are
never encountered). Only few one- and two-loop
graphs need to be computed; for the rest brute-force
estimates are sufficient. The latter are easy exactly be-
cause the diagrams are finite and the PE converges.

In order to establish the existence of the A
limit of the Green's functions, we repeat the above
analysis with sources; e.g. , for the two-point function
we add to S(A) a term Tits'(x)+ )7$2b(y) to get
S~ (y', q, , A). Then

g2S eff

(4&~&44&is«&=( " (n o) =*It( — )
(29)

1 1 /2

The right-hand side has a convergent PE in finite
volume. To deal with the infrared question, we con-
sider the model with an explicit mass term. The
analysis generalizes to this case in a straightforward
way and S„'rr stays as before, only a mass term is
present. Now the PE for the right-hand side of (29)
will have a massive uv cutoff propagator and will con-
verge also for infinite volume, providing a construc-
tion of the A ~ limit of the Schwinger functions on
the left-hand side.

At %=~, the massless model is known to exhibit
chiral symmetry breaking and dynamic mass genera-
tions (believed to survive for all N ) 1 9). We hope to
be able to prove this rigorously for N large but finite,
the idea being that the PE used to compute the RG

transformations converges uniformly in N. Also, for
large N, this may be used to study the nonrenormaliz-
able d=3 theory believed to be governed by a non-
trivial uv stable fixed point. 'o There is thus a good
chance that a rigorous construction of a perturbatively
nonrenormalizable quantum field theory is possible.
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