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Variational Calculation of the Bound-State Wave Function in .A. (p6 —p4)2.
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The Gaussian variational approximation is used to calculate the two-particle bound-state binding
energy and wave function in the model:h. (@6—Q4): in 1+ 1 dimensions. An analytic result is com-
pared to the perturbative calculation of Dimock and Eckmann and to the numerical, lattice work of
Barnes and Daniell.

PACS numbers: 11.10.St, 11.10.Ef

The model of Glimm, Jaffe, and Spencer' possess-
ing the Lagrangian
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We note that the coefficient of P2 for the normal-
ordered theory is not —,

'
mz~ and thus the bare mass is

given by

mtt+ 12kttla(mtt) + 9o~trIo (ma).
The divergent integral Io(p, ) may be defined with an

ultraviolet cutoff; however, it turns out that the calcu-
lated masses are completely independent of the cutoff.

We first compute the expectation value of the Ham-
iltonian sandwiched between a trial vacuum state
which is just the free-field vacuum with a variational
mass parameter B. The optimization condition on 0,
gives the mass-gap equation
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In fact the solution to this equation, 0, , satisfies

d'w(y, , n)= mg = 5
d(f&o

where l (@o,0) is the Gaussian effective potential. 6

The gap equation has two solutions. For values of( 3 7T 0, the solution

Qp= 0

mg = 0 = fPlg (6)

in 1+ 1 dimensions was introduced by the authors as a
simple field theory with a bound state. The model has
been studied perturbatively by Dimock and Eckmann2
and numerically by Barnes and Daniell. 3 Both studies
confirm the existence of a bound state at roughly the
same mass for a given choice of A. tr. We have studied
this model using the variational method and have ob-
tained an approximate two-particle wave function and
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FIG. 1. The two-particle bound-state mass (m2Imz) vs
coupling constant (h./m~). The solid curve is the present
variational calculation. Perturbation theory gives the dashed
curve (Ref. 2) and the points with error bars are the result
of a numerical lattice calculation (Ref. 3).

an expression for the bound-stage mass.
The variational method is ideally suited for investi-

gating the bound-state spectrum for all values of the
parameters. The method has been used sparingly in
the twenty years since its introduction into quantum
field theory by Schiff. 4 A complete set of references is
given by Stevensons who recently has argued per-
suasively for its use in obtaining the Gaussian effec-
tive potential.

To compare with the numerical calculations we
study the model normal ordered at the mass ming. [We
note that the non-normal-ordered A. tt($ —P ) theory
does not have any bound-state solutions. ] In practice
this means that we are studying the potential

(mit) ]@2}+ —,
' mt~r&2+ const,
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corresponds to the minimum vacuum energy. For Xz greater than this critical coupling the nontrivial solution of
Eq. (4) minimizes the ground-state energy.

In both cases the same value of 0 minimizes the one- and two-particle energies. These states are obtained by
acting on the vacuum with one or two creation operators, respectively. Thus our trial two-particle state is

Here o. (p) is the Fourier transform of the two-particle bound-state wave function. The bound-state energy m2 is
therefore

fdp 2coo (p) —24k. s7r [1+(15/2m')in(A/ms) ] [fdp o.(p)/4m']

fdp o-'(p)

We now vary m2 with respect to o. (p) and obtain the integral equation:

o-(p)o)(Q,p) [2'(A,p) —m2] = 6xs 1+ ln dp o-(p)
mB 47r 0) ( A,p )

(9)

Since the integral on the right-hand side is a constant, the bound-state wave function o-(p) can be read from Eq.
(9) directly. The equation can now be integrated to yield an eigenvalue equation for the bound-state mass m2.

mR
2

1+ ln
3 15 2tan '[(1+R/2)/(1 —R/2) ]'/

[1—(R/2)2]i/2 2

where R = m2/m~, which is our main result.
For comparison we have plotted this equation along-

side the perturbative2 and numerical3 calculations (Fig.
1). Note that expanding our result for small A/mz
yields the perturbative expression

'2
+ o(z') . (11)

m~
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This may seem surprising as the perturbative calcu-
lation was carried out in a different model, a model
normal ordered at mz and not ms. However, we find
that for A./m~ ( m. /2, a region which includes the
domain ~here perturbation theory is valid, the varia-
tional calculation yields identical results whether one
normal orders at mR or mz. As one can see from the
figure, our result when expanded to next order pro-
vides substantial corrections to the second-order ex-
pression. We also note on the topic of comparisons
with perturbation theory that in 2+ 1 dimensions, the
variational method gives for non-normal-ordered
—gyre) + A. s@,

—2'R=2 1 —exp R

which possesses nonanalytic behavior in gR and thus
would not appear in any order of perturbation theory. 7

In the moderate-coupling regime our results are
qualitatively similar to the numerical calculations.
Both exhibit a minimum value of R at some value of
A/mg. We find the critical value of X/mg =7r/3, pre-
cisely where the alternative solution to the gap equa-
tion becomes operative as discussed earlier. We be-
lieve that the cusp is an artifact of our Gaussian An

satz. Both the numerical and the variational curves in-
crease beyond this critical value. However, when
A/mz approaches —,

' [exp(47r/15) —1] the variational
curve approaches R = 2 smoothly (with zero first
derivative). Beyond this point the stationary condition
Eq. (9) is no longer valid. The two-particle energy is
now minimized at the variational end point o. (p)
=B(p), i.e. , a free two-particle wave function. The
numerical calculation continues to rise, R ~ as
A./mR2 ~, which is presumably an artifact of the
small lattice used.

In conclusion, we confirm the existence of a bound
state in:A. (@ —@ )2.'. For weak coupling our results
agree with perturbation theory and the numerical cal-
culations. At moderate coupling the two-particle bind-
ing energy reaches a maximum as indicated by numer-
ical calculations. Finally, at large coupling we find that
the binding energy is identically zero corresponding to
free-field behavior.

We believe that our results are qualitatively correct
given our simple variational Ansatz. Of course more
accurate variational and/or numerical calculations are
needed to determine the quantitative details. Work in
this direction is in progress.
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