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Supersymmetric quantum mechanics is formulated for spherically symmetric potentials in N spa-
tial dimensions. It is seen that the supersymmetric partner potential of a given potential can be ef-
fectively treated as being in N+ 2 dimensions. This fact is exploited in calculations using the shift-
ed I/N expansion. Also, the violation of the no-degeneracy theorem in one dimension by the
Coulomb potential is seen as a consequence of this result.
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Given any one-dimensional potential, supersym-
metric quantum mechanics provides a simple recipe
for generating a partner potential with the same energy
eigenvalues (except for the ground state). '2 Often,
for many physical problems, it is profitable to deal with
partner potentials. This possibility has been used by
several people for finding classes of analytically solv-
able potentials, 3 evaluating the eigenvalues of a bi-
stable potential, 4 studying atomic systems, s and im-
proving the WKB approximation.

Recently, large-N expansions, ' particularly those
involving shifted expansion parameters, s 'p have
proved to be very useful in the calculation of accurate
eigenenergies for spherically symmetric potentials.
The purpose of this paper is to show that the use of su-
persymmetric partner potentials can be exploited to
improve further both the accuracy and the simplicity
of large-N expansions. Typically, we find that just the
leading term in a shifted large-N expansion using
partner potentials yields all the energy levels correctly
to three significant digits for essentially any three-
dimensional spherically symmetric potential of physi-
cal interest. Further accuracy is easily obtained from
previously calculated higher-order terms.

We first review the ideas of supersymmetric quan-
tum mechanics and set up the formalism for spherical-
ly symmetric potentials in N spatial dimensions. This
will demonstrate that the supersymmetric partner of a
given potential can be effectively treated as being in
N+ 2 spatial dimensions. " This fact is responsible for
substantially improving the convergence of large-Nex-
pansions. Several useful, illustrative potentials
(Hulthen logarithmically screened Coulomb, quar-
konium) are treated in order to demonstrate our ap-
proach. The Coulomb potential in one dimension is
somewhat special since it is its own supersymmetric
partner; the curious consequences of this (like inter-
secting energy levels and degeneracy in one dimen-
sion'2) are discussed.

Assume that one has a potential V (x) whose
ground-state wave function Pp(x) is known, and
whose ground-state energy has been adjusted so that
Ep=0. Then the Schrodinger equation for the ground

state is (f= m =1)
1 d2

H Qp=— ——
2

+ V (x) toto=0,

and consequently,
II

dx Qp

Define the operators

(2)

This gives

1 d 4o
J2 dx le p

0-0+ —= H'= —— + V'(x),1 d2

dx

where

(4)

v'(x) = v'(x)— d
dx

leap

= —V (x)+ '
. (5)

, 4o,

If Q„ is any eigenfunction of H with eigenvalue E„,
then 0 Q„ is an eigenfunction of H' with the same
eigenvalue E„. V' is the supersymmetric partner of
V. It has the same energy levels as V (except for
Ep= 0).

When making a large-N expansion for an arbitrary
spherically symmetric potential V(r), the effective po-
tential appearing in the radial Schrodinger equation is

~( )
(k —1)(k—3)

( )
f2

where k=—N+2l, I being the N-dimensional orbital
angular-momentum quantum number. Eigenstates are
labeled by k and the radial quantum number
n =0, 1, 2, . . . . As r 0, the n =0 wave function
behaves like Qp(r) —r " ' 2. If one sets

( r) r(k —I )/2(P ( r)
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where 4o(r) is finite at the origin, then Eq. (5) im-
mediately gives the supersymmetric partner of V (r)
to be

N=3, I=O)

(2 —n) a'r —2a (2 —5)'
2 ( I + 5 r) In(1 + 5 r)

, ( ) (k+1)(k —1)
( )

f2

d +o
dr 40

(8) Qo(r) &z ln(1 + QI) e
—(2 —5) r/2 (Q ( 2)

g2e —Sr
1 0

VH = VH+ (1, „)). (10)

As r 0, VH (r) —I/r~, which, as mentioned before,
corresponds to the angular-momentum barrier
(k' —1) (k' —3)/8r for k' = 5 (N = 5, l = 0). Table I
shows the results for the energies of the 2s state of the
Hulthen potential VH with 5=0.05 in three dimen-
sions ( n = 1, l = 0) and the same energies obtained
from the partner potential VH which has N= 5, using
the shifted large-N expansion formulas of Ref. 9. Also
shown in Table I are the results for the "logarithmical-
ly screened Coulomb (LSC) potential" (5 = 0.05,

V'(r) and V (r) have the same energy eigenvalues,
but large-N expansions with V'(r) are far better since
the angular-momentum barrier in Eq. (8) is ( k'
—1) (k' —3)/8r~, where k'= k+ 2, i.e. , effectively
one is working in two extra spatial dimensions!
(Equivalently, I has increased by one. 5) Thus, for ex-
ample, in order to calculate the energy of the state
with quantum numbers k, n of V (r), one can equally
well use k'=k+2, n —1 with V'(r). We will now
demonstrate this procedure with some explicit exam-
ples. These examples are conveniently classified into
two categories depending on whether the lowest-
energy (n = 0) wave function for a given k is analyti-
cally known or not.

In atomic physics, the Hulthen potential is widely
used. For N = 3, l = 0, the effective potential is'3

f)e ar (2-~)z

e —sr 8

yo(I)o- (1 e —ar)e —(2 —8)r/2 (5 ( 2).
With use of Eq. (5), the supersymmetric partner of VH

1S

Vo r =—1 r

(2.34)'
0.52 —Ep,

Eo = 0.239 06, (12)

for N=3, l=0. The result is shown in Table I.
It is clear from Table I that, although excellent

results are obtained with use of the shifted 1/Nexpan-
sion for the original potential V (r) in three dimen-
sions, even faster convergence results from use of the
supersymmetric partner potential in five dimensions.
Thus, for many applications considerable analytic sim-
plification occurs since it is sufficient to use just the
leading term in the shifted 1/N expansion for V'(r).

There is another virtue in using V'(r). If we are
dealing with a bistable potential V ( r), the two
lowest-energy levels are often closely spaced. Howev-
er, its supersymmetric partner V'(r) does not have the
lowest-energy state and oscillates less than V (r) (it is
essentially only a single well). 4 For this reason alone a
shifted large-N expansion of V'(r) (which is an expan-
sion about one stable minimum) would be preferable.

(This potential was chosen since its ground state has a
simple analytic form. It has many possible future ap-
plications in problems involving modified Coulomb
potentials. Its behavior is qualitatively similar to both
the Hulthen and the Yukawa potentials; see Fig. 1.)

If the lowest-energy wave function for given N and 1

is not analytically known, one can, of course, deter-
mine it via numerical integration of the Schrodinger
equation. This immediately yields the partner poten-
tial V'(r), which can be used in large-N calculations
for all values of the radial quantum number n. As an
example we have determined the first excited-state en-
ergy of the quarkonium-type potential, '5

TABLE I. Energies for the first excited state of various potentials (/I, = rn =1). E(ol, E('), and E(~) represent the results
from the shifted large-N expansion (Ref. 9) keeping just the leading, two, and three terms, respectively.

Potential
Exact

energy' E(o)

Results with
N = 3 using V (r)

(n =1, I=0)
E(&) E(2) E(o)

Results with
V'(r) (N=S)
(n=0, l=0)

E( ) E(2)

Hulthen [Eq. (9)]
LSC [Eq. (11)]'
Quarkonium [Eq. (12)]d

—0.101 25
—0.103 96

0.568

—0.101 456 —0.101 249
—0.104 65 —0.103 97

0.573 0.574

—0.101 250 —0.101 250 —0.101 250 —0.101 250
—0.103 96 —0.104 00 —0.103 96 —0.103 96

0.573 0.569 ~ ~ ~ ~ ~ ~

'Reference 14.
"

VH ( r) + EH, EH = —
8 (2 —5), 5 = 0.05.

c VLO(&)+EL; E,o= —
8 (2 —»

Vg(r) + Eg', Eg =0.23906.
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FIG. 1. Plot of —rV(r) vs r with V(r) given by the

Hulthen potential (H), Eq. (9), the logarithmically screened

Coulomb potential (LSC), Eq. (11), and the Yukawa poten-

tial (Y), V(r) = —e ~'/r. For purposes of comparison all

potentials have been chosen to vanish as r ~ and the

parameter 5=1. The unscreened Coulomb potential corre-

sponds to the line —r V(r) = 1.

Finally, we consider the Coulomb potential in one
dimension. For any symmetric one-dimensional po-
tential V(x), the effective potential of Eq. (6) with
k= 1 gives only even eigenstates since $0(x) —const
as x 0 [Eq. (7)]. The partner potential will have
k' = 3, corresponding to states in three dimensions or
odd states in one dimension since Po(x) —xas x 0.
The Coulomb potential V(x) = —A/ ~

x
~

is special
since V (x) with k= 1 is identical to its partner V'(x)
with k' = 3. That is, the odd states of the one-
dimensional Coulomb potential are degenerate with
the even states of the same potential (except for the
ground state). '2 This is perhaps the only potential that
violates the no-degeneracy theorem in one dimen-
sion, '2 and this can here be seen to result from super-
syrnmetry. The behavior of the energy levels and
wave functions of one-dimensional power-law poten-
tials V(x) = A ~x ~" near v = —1 is rather curious and
can be studied reliably in the shifted I/N expansion
since its results are exact at v = —l.s 'o We find that
the odd and even energy levels cross each other at
v = —1 (see Fig. 2). As v decreases through —1, the
ground state (whose energy is —~ at v = —1) disap-
pears, and each of the remaining even states loses two
nodes in their wave function as their energy falls
below an odd state. '6 The variation in the number of
nodes for each state as a function of v is shown in Fig.
2. Note that for any given v the number of nodes in-
creases with energy, and the ground-state wave func-
tion is nodeless, as expected.
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FIG. 2. Low-lying energy levels of the one-dimensional
power-law potentials V(x) = —~x ~" vs v for —1.25 ( v ( 0,
as given by the shifted 1/N expansion (Ref. 9). Curves are
labeled by the number of nodes in the wave function of the
given states.
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