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We display a model for the up- and down-quark mass matrices which permits, for any number of
generations, the complete determination of the Kobayashi-Maskawa matrix in terms of the quark
masses. We discuss in this framework the correlation between the quark-mass spectrum and a
maximal CP-nonconserving phase and also give an application to the four-generation case.
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By now it is clear' that if the standard model is to
explain the observed CP nonconservation in the KL-
Ks system the magnitude of this nonconservation
must be about as large as possible. We hope that this
feature might be a valuable clue to the development of
a yet more fundamental theory. Towards this end we
would like to transfer the criterion for maximal CP
nonconservation from a model-independent statement
about the Kobayashi-Maskawa (KM) matrix to a class
of models for the (not yet diagonal) up- and down-
quark mass matrices. One interesting model for these
matrices is the Fritzsch2 model which (assuming all
masses are known) determines the (N —1)2 parame-
ters of the N-generation KM matrix in terms of N —1

arbitrary constants. Another interesting model is due
to Stech3: This model provides N(N 1)/2 relation—s
among the KM parameters. Evidently neither of these
completely determines the KM matrix~ in terms of
masses. Here we point out that these two different but
reasonable models do not necessarily contradict each
other. Thus, they may be imposed simultaneously.
Remarkably, this results in the complete determina-

m„=5.1 MeV, m, =1.35 GeV, m, =45 GeV,
(1)

md = 8.9 MeV, m, = 175 MeV, mt, = 5.3 GeV.
It is interesting that the up-to-down mass ratios for
each generation,

m, = 8.4,
mc —77
ms

" =0.57,
md m~

indicate that the up-quark mass is unusually low. We
also need the ratios of quark masses for successive
generations:

(m, /m„)' = 16, (m, /m, )' '= 5.8,

(m, /md)' = 4.4, (mt, /m, )' = 5.5.
(3)

Again, the small value of m„breaks the pattern.
It is very convenient to adopt a phase convention

for the KM matrix U, in which, to practical accuracy,

tion of the KM matrix. The condition for maximal
CP-nonconserving phase becomes correlated with the
quark mass spectrum.

We will use, for definiteness, the following quark
masses5 6:

r'@13

—S)2e
~13+S S

—'1@12+~23~ —S23e 23

'~23
23e (4)

Here the three mixing angles coincide with the
measurable transition amplitudes S12=

l U„, l, S23
=

I V,bl, and S13= l U„t, l. The physical CPnonconser-
vation is measured by the invariant phase

412 + 423 413. (5)
All CP-nonconserving amplitudes will be proportional
to l U„, U, t, U„blsin@. Thus if one holds l U„, l, l U, t, l,
and l U„bl fixed, the CP-nonconserving amplitudes will
be maximized for i@i =m/2. We shall call this situa-
tion "maximal CP nonconservation. "

The Stech model is defined by the following Ansatz
for the up-quark mass matrix M„and the down-quark

M„=M„=M„,
Md = Md = o.M„+A,

(6a)

(6b)

where o. is a constant and A is an antisymmetric ma-
trix. Such relations might arise in a wide class of
theories. In the limit 3 =0, U= 1 since M„and Md
would be diagonal in the same basis and all the ratios
in Eq. (2) would become equal. In fact, all mixing an-
gles are small experimentally and the second and third
generations do have roughly the same mass ratio. The
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matrix A is responsible for correlating the nonzero
mixing angles and CP-nonconserving phases with the
realistic mass spectrum. Bringing M„and Md to diago-
nal form one finds the relation

512e
mcms,

Equating Ut2 from Eqs. (4) and (13) yields
' 1/2 ' 1/2

d l(P -P) mg—e (i4)

QUMd U 0 =nM„+A', (7)
where M„=diag(m„, —m„m, ), Md =diag(md, —m„
m&), and A' is another antisymmetric matrix. Also the
"trivial" phase matrix Q = diag(e ', e ', e '), with
g;y;=0, is present to express the deviation of (4)
from the most general unitary unimodular matrix.
The diagonal elements of (7) yield

md —m +mb mb ()
m. —m+ md m,

as well as the two predictions

(S„)'=md/m, = (0.23)2, (9a)

(S23) = m, /mb —m, /m, = (0.055)'. (9b)
The numerical value of S23 clearly is sensitive to the
quark masses. These agree with the experimental
values St2=0.23 and S23=0.05+0.01. In addition,
the condition detA'=0 yields the approximate maxi-
mality of the invariant CP-nonconserving phase C.

The generalized Fritzsch model assumes that M„
and Md each have the form

OAO
Mj=e 'Fie J, F= A 0 B, (1o)

, 0 BC
where A, B,C are positive constants and X; and pj are
some phases. This model describes the situation
where nearest-neighbor generations "interact" with
each other and where the dominant scale is set by the
heaviest quark mass. The matrix elements of Fcan be
written in terms of the quark masses":

A = (mtm2)', B= (m2m3)', C= m3

(m3)) m2)) mt). (11)
F is diagonalized by the orthogonal matrix, R;

RTFR =M,

Since the first term on the right-hand side already ac-
counts for the magnitude of St2, (14) shows that
P2 —Pt must be very roughly around +90' and that
the phase qbt2 is small. Similarly, equating U23 from
(4) and (13) yields

S23e

' 1/2 ' ' 1/2
ms + mc

mb mt

i(p3 —p2)e (is)

Since the magnitude of S23 is considerably smaller
than the magnitudes of each of the two terms on the
rtght-hand side, the latter must partially cancel and so
the phase p3 —p2 must be small. Comparing U23 and
Ut3 from (13) yields the simple relation

Ut3/ U23 —( m„/m, ) ' e

Actually, because of cancellations, Ut3 is sensitive to
corrections which are of higher order in the mass ra-
tios in (12). Taking these into account gives a predic-
tion i Ut3i = 0.0034 +0.0014 which is consistent with
the experimental bound'

i Ut3i ( 0.007. For the in-
variant CP-nonconserving phase defined in (5) we see
from the approximation (16) that

4 = arg Ut2+ arg ( U23/ Ut3)

(17)= rt t2+/3t /32—
which, upon insertion of numbers, is found to be max-
imal.

Notice that the predictions of the Stech model and
of the Fritzsch model are complementary to each oth-
er. Both agree that 4 is maximal. The Stech model
predicts St2 and S23 in agreement with experiment but
does not yield a prediction for St3. On the other hand
the Fritzsch model does not predict St2 and S23 but
does predict St3.

At first glance one might think that the underlying

(m /m )'i'
—1R = (mt/m2)' '

t
—( m t/m3) 'i' (m2/m3) ' '

0

(m2/m3)' '
1

Finally the KM matrix is given by

U = P R„PRd, P = diag(e', e', e' ), (13)

where P;= p„;—pd;. Because of the arbitrariness of
overall phases we may set g;P;=0. Notice that the
factor P ' is required to bring U to the form (4).

ID 1
( )2

S

((1,-82)
FIG. 1. Schematic vector diagram illustrating Eqs. (14)

and (17). The maximum value of pi2 occurs when the vec-
tor Ui2e ' is tangent to the circle which makes the invari-
ant phase ( —4) ninety degrees.
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assumptions are rather different. M„ for the Stech model in (6b) has an antisymmetric piece while M„ for the
Fritzsch model of the form (10) apparently differs only in an unessential way from a symmetric matrix. However,
it is possible to write down unique mass matrices which satisfy both assumptions (6) and (10):

e w„o
M„= A„e

0 BM C„

(18a)

ia 0 0

p ib p (n2g 2+ a2)1/2

—ib 0 0

(n2g 2+ 2)1/2

(n'B'+ b')' '

0 0 Ad 0
(n2B2+ b2)1/2 p —1=p g p B p —1

nC„ 0 Bd Cd

COS(P1 —P2) =nA„/A„,

cos(P2 P3) = nB„/Bd.

(19a)

(19b)

Note that A„, B„, and C„are given in terms of the
three up-quark masses. The parameters Ad, Bd, and
Cd are similarly given by the three down-quark masses
and in turn determine n, a, and b. Thus the phases in
(19) are specified up to a trivial sign ambiguity. The
KM matrix for our model is similarly specified in
terms of the quark masses for an arbitrary number N
of generations. Note that the generalized M„ for N
generations has nearest-neighbor interactions with a
diagonal entry only for the heaviest quark.

For three generations the consistency constraints
a2 = Ad2 —n2A„2 & 0 and b2 = Bd2 —n2B„2 & 0 are equiv-
alent to the positivity of (S12) and (S23) as predicted
in (9). Note that Eqs. (19b) and (15) for S23 can be
seen to agree with each other when (19b) is used. The
present model predicts all KM parameters, S12 = 0.23,
S23 0.055, S13 0.0034 + 0.0014, and IC I

= 90'
This model also enables us to discuss the concept of

a maximal CP-nonconserving phase in terms of the
physical mass spectrum. Note from (14) that, because
of the smallness of m„, the phase $12 is small. Then
the invariant phase 4 in (17) is roughly measured by

P1 —P2. From (19a) we predict
r ' 1/2 '

mmmm

my
(2o)cos(pl p2)

md mg mg

In the limit where all ratios of up- and down-quark
masses are about the same [see Eq. (2)], (20) would
tell us that cos(p1 —p2) =1. However, the unusually
low value of m„drastically distorts the pattern in (2)
and we actually have cos (P1 —P2) =0.06 which gives
a practically maximal invariant phase. Note that the
limit m„p which corresponds to zero "strong" CP
nonconservation' considerably reduces S13 [see Eq.

where the phase matrix P which was defined in terms
of unknown phases p; (satisfying g;p;=0) in (13) is
now explicitly specified by

V12 V23

m,,

( vM, v')»( UM„U') 23

(UMdU )13

( )
A)3m,

The invariant phase C = arg( U12 U23/ U13) is then
directly given by arg(&12223/A1'3) which is clearly
+ ~/2.

It is interesting to see what role the invariant phase
plays in the Fritzsch model, where the phases p; are
still free parameters. The CP-nonconserving ampli-
tudes to lowest order are proportional to the small an-

gle @12. @12 may be determined geometrically, as
shown in Fig. 1, from Eqs. (14) and (17). It is seen
that for fixed masses and variable p1 —p2, @12 is max-
imum at the point of tangency; this corresponds to a
maximal invariant phase I& I

= m. /2 rather than a maxi-
mal p1 —p2. The latter angle going through 90 has
been used as a maximality criterion in the Fritzsch
model by Georgi, Nelson, and Shin. 2 They also advo-
cate constraining p2 —p3 to be zero. In the present
model cos (p2 —p3) = m, m1, /m, m, . This does not in-
volve m„and so the pattern in (2) shows p2 —p3 to be
small. Explicitly, p2 —p3 = + 18 in agreement with
the determination from (15) using s23 = 0.05.

The CP-nonconservation parameter e for three gen-
erations in the standard model is estimated' to be

I.I,„.../I. I.„„=290s»B sine .

This indicates that, with S~3 given by either the

(18b)

t (16)] and hence the weak CP-nonconserving ampli-
tudes. For the actual value m„=5.1 MeV we see that
the allowed solutions give @12= +16' corresponding
to p1 —p2 = + 76'. Thus the invariant phase is
4= 88', illustrating that the first two terms of (17)
work together to keep 4 close to maximal. This may
be understood from Stech's model since (7) yields,
when we note that the phases in 0 cancel,
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1/2
c I (p3 p2)e U34,

m,
(23a)U24 =

1/2
mu I(p p ) »4
mc

~ 1/2
mb

U14 =—
1/2mt, (p p )eU34 =

m,
i

mb

as well as
r 1/2

mumc mb'

mdm~ '

1/2 r

mc mg

m~mb, m. . .
r ' 1/2

(23b)

(23c)

(24a)

(24b)

mg mb
(24c)cos(P3 —P4) =

m tmb

Comparing (24a) with (20) shows that mb /m, . should
be about the same as mb jm, if we wish the previous
prediction for St2 to be unchanged. Then (24b) will
reproduce the three-generation results for S23 and St3.
Substituting (24c) into (23c) gives

mb/ m, ,
(25)

which is the analog of (9b). The new CP-non-
conserving phases are seen to be I124 I123 and
I234 arg U23 + Pz —P3. It 24 is obviously maximal
since I123 has already been shown to be maximal. I234
is also easily seen to be maximal. The maximality of
the three invariant phases clearly arises in the same
way as in the three-generation case. Note that m„ap-
pears in (24a) but not in either (24b) or (24c). From
Eqs. (23) we obtain

~ U24~ = 0.17~ U34~ and
~ Ut4~= 0.01~ U34~. Equation (25) shows that, accepting the

Fritzsch model or the present model, one requires the
factor' B to be around unity rather than around —,'. If
the latter value for B turns out to be correct we must
search for additional contributions to e. A natural pos-
sibility is to consider a fourth generation. If a fourth
quark generation (t', b') existed and had masses in
agreement with the pattern (3) one would expect m,
to be roughly in the 130-GeV range and m, to be in

the 1-TeV range. It is then easy to see that, to a good
approximation, the formulas (14), (15), and (16) for
U]2 Uz3 and Ut3 continue to hold. The complete
parametrization' of U in analogy to (4) requires the
specification of three additional mixing angles which
may be taken as

~ Ut4~, ~ U24~, and
~ U34~. Two more

invariant CP-nonconserving phases beyond 4&—= It23,
I124 arg(U12U24/'U14) and I234 arg(U23U34/'

U24), are also required. These may be read off from
the relations

r

rough pattern (3), one would not expect
~ U34~ to be

larger than about 0.1. A value of
~ U34~ of this size

would lead to a contribution to ~ about the same as
that of the previous three generations. A more de-
tailed discussion of this point will be given elsewhere.
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