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Statistical Mechanical Origin of the Entropy of a Rotating, Charged Black Hole
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It is shown that the entropy of a rotating, charged black hole is, in senses made precise in the pa-
per, (i) the logarithm of the number of quantum mechanically distinct ways that the hole could
have been made, and (ii) the logarithm of the number of configurations that the hole's "atmos-
phere, " as measured by stationary observers, could assume in the presence of its background noise
of acceleration radiation. In addition, a proof is given of the generalized second law of
thermodynamics.

PACS numbers: 04.60.+n, 05.70.Ln, 05.90.+m, 97.60.Lf

Hawking' has shown that a stationary black hole em-
its thermal radiation precisely as though it were en-
dowed with a temperature TH=ItgH/27r, where gH is
its classically defined surface gravity and we use units
with G = c = kB = 1. By comparing this result with the
classical laws of black-hole mechanics, Hawking has
also inferred'3 that a black hole must be endowed
with an entropy Stt= AH/4t, where AH is the classical-
ly defined area of its horizon.

This value for the entropy is in accord with a previ-
ous order-of-magnitude inference by Bekenstein. 4

~HBekenstein has also conjectured ~ that 8 —= e 0 must
in some sense be the number of "quantum mechani-
cally distinct internal states" that a black hole could
have, corresponding to its classically observed external
parameters. Despite strong indirect evidence for
Bekenstein's conjecture, 6 the physical nature of a
hole's "internal states" has remained a puzzle; and
consequently there has been no satisfactory statistical
mechanical derivation of the entropy SH. Three
answers to this puzzle have been proposed: (i)
Gerlach'ss view of Hawking radiation as produced by
zero-point fluctuations on the surface of the star that
collapsed to form the hole, and his conclusion that the

number W,~ of zero-point fluctuation modes that give
rise to the Hawking radiation of a freely evaporating
Schwarzschild hole satisfies ln W, ~

=—28QStt. (ii)
York's9 view of Hawking radiation as produced by the
hole's "quantum ergosphere" of thermally excited
gravitational quasinormal modes, and his conclusion
that the number of ways W~, that this quantum ergo-
sphere can be excited and reexcited, during the eva-
poration of a Schwarzschild hole into a surrounding ra-
diation bath, satisfies ln 8'« =—1.106 17SH. (iii) A
view implicit in the writings of Bekenstein4 6 and

~HHawking3 that W =—e H might be the number of quan-
tum mechanically distinct ways that the black hole
could have been made by infalling quanta (particles).
In this paper we shall pursue this third view and from
it shall obtain a precise statistical mechanical explana-
tion of W.

We begin with an order-of-magnitude derivation of
the number of ways that a Schwarzschild black hole of
mass M can be made by accretion of quanta from "in-
finity" (i.e. , r ))2M). We shall insist that the hole
be made in a total time less than the Ha~king evapora-
tion time' tH =25607rv& 'M /tt =640v& 'NsM, so that
it does not evaporate during construction. Here and
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below "="means "is equal to, aside from factors of
order unity;" v& is the effective number of distinct
kinds of field modes (i.e. , distinct particle species, hel-
icities, etc. ) into which the hole can radiate'; and
Na—= 47rM /h is the hole's dimensionless Bekenstein
number, which is also equal to the nonrotating hole's
entropy SH.

The vast majority of ways to make the hole involve
building it up, bit by bit, by the accretion of one quan-
tum after another, with the individual quantum ener-
gies e kept as small as possible: e =f/4M, corre-
sponding to a wavelength of order the hole's
Schwarzschild radius. " " The total number of such
quanta required to make the hole is n =—M/e =—Na.
The total number of single-particle quantum states in
which these n quanta can be injected, N, is given
by the total phase-space volume that they occupy be-
fore injection, = 277re3MztH, multiplied by the densi-
ty of single-particle states in phase space, v&/(2mt)3,
i.e. , N =—(135/47r2)Na=—Na. The number of ways
to make the black hole, W', is then the number of
ways to distribute the n =—Na quanta (assumed, for
simplicity, to be bosons) among the N =—Na states,

W =—(N —1+ n)!/[(N —1)!n! ],

and the logarithm of this in good accord with
Bekenstein's conjecture,

hole using them will be infinite. One conceivable cut-
off, the Planck length, leads to N, =—NB and thence,
via Eq. (1) with n, = Na « N, =—Na, to

ln W, =—n, ln(N, /n, ) =—Na lnNa, (3)

in serious violation of Bekenstein's conjecture. Even
for the much more conservative cutoff of r =2M
+t' 2, corresponding to z = (8M@ 't2) 't2, one obtains
N, = Na3t2, which leads again to Eq. (3).

Fortunately, this insider calculation is flawed by our
failure to take account of the thermal "acceleration ra-
diation, " which quantum field theory predicts'4'5 to
be measured by particle detectors (and demons) at rest
near a black-hole horizon. To see quickly how this re-
moves the 1nNa from Eq. (3), consider the related is-
sue of the number of ways to inject one quantum of
energy E into N )) 1 identical states. If the N states
are initially empty (analog of our above, incorrect, in-
sider calculation), then the number of ways is Eq. (1)
with n = 1, which gives ln W'=lnN [analog of our in-
correct inNa factor in Eq. (3)]. By contrast, if the N
states are initially thermalized at a temperature T, then
they contain already n =N/(e tT—1) quanta distri-
buted randomly, and the number of distinct ways to
inject one more quantum is

[Eq. (1) with n replaced by n+1]
[Eq. (1)]

ln O' =—NB= SH. (2) (N+ n) EtT

This result is not surprising, since our accreting par-
ticle configurations are an approximate "time rever-
sal" of the products of black-hole evaporation, which
are known to have a statistical mechanical entropy
S=in W = —,'N . '2

The modes used in the above analysis are all accessi-
ble from outside the hole's potential barrier, r & 4M
However, these "outsider" modes are far outnum-
bered by the "insider" modes accessible to a
"demon" at a proper distance z = 4M(1 —2M/r)' 2

((2M above the horizon. The number of insider
modes is

N, = (47r/0~2„)N =—(M/z)2N =—(M/z) Na,

where 0„,= (33 /8 )z/M is the "escape angle" into
which the momenta of infalling outsider modes are
focused as they fly past the demon [Box 25.7 of Mis-
ner, Tome, and Wheeler (MTW)'3]. Because the in-
sider modes at height z must have vertical wavelengths
& z, their red-shifted energies (the amount by which

one of their quanta can change the hole's mass) are
AM & (tt/z)(1 —2M/r)'t2= A/4M = e; and thus t—he
maximum number of quanta that can be injected into
them to make the hole is n, =—M/e =—Na.

If we do not invoke some sort of cutoff, the number
of insider modes will be infinite (lim, ON, = ~), and
correspondingly the number of ways to make the black

so that

E (energy injected)
ln W= —=

T T

= (change in entropy). (4)

Thus, the thermal population of the states converts the
offending lnN into the desired thermodynamic rela-
tion.

With this as motivation, we shall now compute pre-
cisely the number of ways to make a slowly evolving,
charged, rotating, axisymmetric black hole by injecting
quanta into its thermalized "atmosphere. " Our com-
putation will be based on observables measured by a
family of fiducial observers (referred to as FIDOS
elsewhere'6; analogs of the demon used above) who,
very near the hole, are at rest with respect to the
horizon's generators. In the limit that the hole's evo-
lution is ignored, these fiducial observers are the
zero-angular-momentum observers (ZAMO's) of Bar-
deen. ' In the evolving case their world lines snuggle
up to the horizon as shown in Fig. 1. These fiducial
observers see as simultaneous all events on a spacelike
hypersurface +, of constant "universal time" t, which
is orthogonal to their world lines and which, conse-
quently, is asymptotic to the horizon ~ as shown in

2172



VOLUME 5454, NUMBER 20 PHYSICAL REVIEEVIEW LETTER 20 MAY 1985

AM-=M=M(. , ) —M z, , XJ-=
—= 0(., ) —0(.,):

zo

H

AJ== J ( ( T~~ ) + (J ) A~) AH dzH

bM= I ( —To — oA d( —T,') —(J')~,)~ dz (sa)

(Sb)

(J') aH dz. (Sc)

FIG. 1. Space-time g
11 dv potted v

i an in ime

d
'

t f th 1

n initiall d
evo ution of a

oration, and th
o accretion th, t en shrinks
again.

Fig. 1. BBecause of this ais asymptotic behavior
cia rs see layered into ~

es zo and z

etween

i above the h

h

proper dis-

izon s evolution
e entire histor

particular the h
orlzon tlm

, charge Q, an
e gravity gH, te

, angular velocit

H. ™P
iy 0H,

H

11 11

zin+ .
b d d as functions of

The evolut'u ion of th

so height

pressed in te
he horizon A

g
V

er of
ally ex-

(")o
and thing gravitons'

t e stress-ene

nslated into 1hen tra
c arge-cur

d
he fiducial-

evolution law e equations for

Here @ 0 , and 0 denotee components alon

vector g wh' h
e axis of symme

ic far fr
1o h (

generates ti
om the hol

e almos t Killing

1 t' a on th
' ' -o

gravitational red-sh'
e ic four-potent l.

n amental fii ucial-obse e — ea

fe-particle stat
i ucial-obse

w ich contribute to

fo 1 1

[He
charged

t
and j its c

particle's

energy) and " energy-at-inf'

Jl the eigenvalues of
POI= ~I+ q~
tic energy t,...k...

y y the excess ar
'

p s o
acceleration r d

nn brn

server'
H

—measured

&I = [exP(el —QHJ'I —4p ~1—&HJI ~'Hql)&TH +1~ (6)

and the inmtegrals of ( To„) and Jo over the three-

E,—= —U-=—U p, =n-'(—POI +HPPI )

=(X (El 0 HJI @Hql )

wher Ao —Q,

t 1 Th
o e's electric poten-

2173



VOLUME 54, NUMBER 20 PHYSICAL REVIEW LETTERS 20 MAY 1985

volume zp & z & zt on &t are
A

J ( T„)AH dz = X ( nt —nt )p„i, (7a)

(J ) AH dz = X ( ni "t) qt. (7b)

Here the sum is over all states
~ I) which are spatially

confined to zp & z & zt.
By combining Eqs. (5) and (7) we obtain

(nt nt)et b J= X(nt n—t)ji,

SQ= X(n, n, )q,—. (8)

These equations say that the fiducial observers mea-
sure the hole's change in mass AM, angular momen-
tum 5J, and charge b, Q, between heights zp and zt, to
be equal to the excess energy-at-infinity e, angular
momentum j, and charge q over the e, j, and q of
the fiducial-observer —measured acceleration-radiation
bath.

Although the bath contributes nothing to b, M, b, J,
and b, Q, individual bath quanta are physically indistin-
guishable by fiducial-observer measurements from
quanta injected by an external physicist or internal
demon. ts Consequently, if we ask how many quantum
mechanically distinct ways there are to generate the
AM, 5J, and hQ of Eqs. (8) by injecting quanta into
the states ~1), the answer will be the same as in the
standard problem of injecting new quanta into a ther-
mal bath with temperature TH and thermodynamic po-
tentials AH and 4H [Eq. (6)]:

W, , = exp[(b, M AHA J—CiHb, —Q)/TH]

= exp(b, SH).

number of distinct configurations which could exist in
the hole's thin, layered atmosphere in the presence of
its background noise of acceleration radiation. Put yet
differently, SH is the logarithm of the amount of infor-
mation that one loses when one "stretches the hor-
izon, " in the black-hole "membrane formalism, "2P to
cover up its thin atmosphere. From this viewpoint,
black-hole entropy is only skin deep.

The above analysis provides, as a side product, a
proof of the generalized second law of thermo-
dynamics —that in any process involving the in-
teraction of a black hole with the external universe,
the sum of the hole's entropy and the universe's en-
tropy cannot decrease. The proof: Since the hole's
atmosphere plays the role of a thermal bath which ex-
changes particles with the universe, and since (when
one used energy-at-infinity e and Hawking tempera-
ture TH instead of locally measured energy E and tem-
perature T) the change in the hole's entropy is precise-
ly that associated with a standard thermal bath, the
generalized second law is merely a special case of the
ordinary second law.
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Here AS~ is the change in black-hole entropy between
zp and zt as defined thermodynamically by Hawking. '3
This is precisely the answer we were hoping for!

Actually, Eq. (9) is the number of ways to do the in-
jection only if b, M, b, J, and AQ are small enough to
not disturb the thermal bath significantly; i.e. , only
if AM « g ntet —(M/zp)2(t/M), which means zp« lt t 2(M/AM)t 2, and similarly for b, J and hQ.
Now, zp/M —exp( —gHht), where b, t is the universal
time (proper time measured far above the horizon)
since the piece of atmosphere at zp was laid down.
Thus, after the very short time b, t —gH

' In%a—(4X 10 3 sec)(M/Mo), zp is of order h' 2 and b, M
has sunk low enough into the thermal atmosphere to
not disturb it significantly.

By taking the logarithm of Eq. (9) and summing
over all layers in the hole's atmosphere, we see that
SH = ln W, where SH—= (total entropy of the hole as de-
fined by Hawking2) and W= (the number of quantum
mechanically distinct ways to generate the hole's total
M,J, Q by injecting quanta into its thermal atmo-
sphere). Put differently, SH is the logarithm of the
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3S. W. Hawking, Phys. Rev. 13, 191 (1976).
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sJ. D. Bekenstein, Phys. Today 33, No. 1, 24 (1980).
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Wesley, Reading, Mass. , 1979).
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in Quantum Gravity 2, edited by C. J. Isham, R. Penrose, and
D. W. Sciama (Clarendon, Oxford, 1981).
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~ov& enters a thermodynamic analysis through the Stefan
constant a = v~n ~/30li3
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