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Simple Realization of the Inflationary Expansion of the Universe
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The time evolution of the N-vector model coupled to the Einstein field equation in a Robertson-
Walker metric is studied numerically under the assumption of initial equilibrium at high tempera-
tures and in the limit as N ~. The system shows inflationary expansion of the Robertson-
Walker scale factor, a(t), over many e-foldings as well as local ordering. The associated structure
factor develops a Bragg peak near zero wave number which has the proper weight for a spontane-
ously broken symmetry and has a width (inversely proportional to a characteristic domain size)
which is inversely proportional to a (t)

PACS number: 98.90.8p
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where Q;(x, t) is an N-component field, II, is the
canonically conjugate momentum, and V(Q) is the po-
tential assumed to be of the form

N

V(Q) = Nr+ u X4uN
(3)

The equations of motion satisfied by the fields are

;=0;,
II;= —3HII —t) V/()P;+ a O' Q;,

(4)

The nature of the evolution of the early universe is
a topic of enormous complexity and interest. ' The
various proposed "inflationary" scenarios2" are ap-
pealing in certain respects from a physical point of
view, but as has been recently pointed out, s certain as-
pects of the process, as typically presented, seem un-
physical. In particular, the nonequilibrium nature of
the problem does not seem to be properly taken into
account. Part of the difficulty is that the complete
problem, which involves the coupling of some non-
trivial quantum field theorys to Einstein's equations in
a strongly nonequilibrium setting, is simply too diffi-
cult to handle. In this paper I treat the more tractable
problem of the coupling of Einstein's equation to a
field theory which has the desirable features of solva-
bility and a nontrivial phase structure. The field
theory is the ¹ ector model in the N ~ limit. I
find inflation and ordering as a natural consequence in
this model.

The basic model I study assumes a Robertson-
Walker metric where the scale factor, a(t), is driven
in time t by the average energy density (p) via the
Einstein field equation8

(~/a)'= (87r/3) (p) .

The energy density is assumed to be given by C(x —x', r)5,, = (y, (x, r)y, (x', t)),

D(x —x', r)h;, = (p;(x, t)II, (x', t)),

G(x —x', r)5;, = (II, (x, r)II, (x', t)),

(6)

where I have taken advantage of the symmetry among
the N components which is preserved for any finite
time.

For arbitrary N the equations of motion for C, D,
and 6 do not form a closed set because of the non-
linear terms in r) V/BP;(x). In the large-N limit it is
well known'3 that the graphical structure of the associ-
ated perturbation theory in powers of the quartic cou-
pling simplifies considerably and one obtains the
closed set of equations for the spatial Fourier-

where H = a/a is Hubble's "constant. "
The average of p in (1) is over an initial probability

distribution. While I will assume that the system is in-
itially in thermal equilibrium at temperature To, other
initial conditions could easily be studied. ' The deter-
mination of (p(t) ) requires knowledge of the correla-
tion functions between the Q;(x, t) and II;(x,t) which
are also averaged over the initial equilibrium state. A
second, and less restrictive, assumption is that we have
a classical system. This requires, for the usual reason,
that I introduce a short-distance cutoff in the theory
which restricts wave numbers to be less than a cutoff
A. One can model the effects of quantum statistics,
which naturally provide a large wave-number cutoff,
via the Planck distribution by choosing A= To. Thus,
the average energy density will go as To4 for large To in
equilibrium. It does not seem difficult to treat the full
quantum-mechanical problem except that the numeri-
cal solution appears to be more complicated.

Because of the symmetry in the problem the average
values of the fields (P;(x,t)), (II;(x,t)), which are
initially zero, remain zero. " Thus, nontrivial informa-
tion about the ordering process is contained in the
correlation functions
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transformed quantities as follows:

C=2D,
D= —3HD —I C+6,
G = —6HG —2I D,

I = r+ uS(i) + q'/a2(l)

S(l) =gt [d'q/(27r) ]C(q, t).

(9)

(12)

spatial energy by dropping from its initial value of
1.68 && 106 to 4.57 & 103 at time t = 0.01. It is during the
next time regime 0.01 ~ t ( 15 when the system un-
dergoes the major portion of its inflationary motion.
In Fig. 1 we see that the scale factor increases by 660
e-foldings. During this time G(t) and S(t) are decay-
ing exponentially in time with apparently the same
rate. I obtain the following excellent fits to the data:

S(i 0) e
—0.14st

G 2 469 —0.148t

These equations, together with (1), form a nontrivial
coupled set of nonlinear equations.

The associated equilibrium problem at temperature
T with a probability distribution exp —H/T, where
H= f d3xp(x) and a =1, can be solved exactly (for
the same reasons as in the nonequilibrium case). The
average value of the Fourier transform of the momen-
tum correlation function is given by the equipartition
theorem to be G(q) = T, while from symmetry con-
siderations D(q) =0. The Fourier transform of the
matter field correlation function is given by

C(q) = T/(q'+ r+ uS), (14)

where the "short-range" order parameter S = (llI (x) )
is given in equilibrium by (14) with C(q, t) replaced
by C(q). For very high temperatures one finds that'
S= T2/(6m2u)' . For r ( 0 there is a second-order
phase transition at a temperature T, = (2m-2I r I/u) tl2.

For lower temperatures the system spontaneously or-
ders [there is a direction i for which (tCI;(x)) a0].
There are Nambu-Goldstone modes, the Fourier
transform of (5&;(x)5&;(x') ) [wh«e &tel;(x)
=p, (x) —(tel, (x)) ] is given by Tq 2, and the short-
range order parameter S is given by lr I/u for all tem-
peratures below T, .

I have solved the coupled set of equations (9)—(13)
numerically through a direct forward-step integration
where, after each step, the wave-number integrations
over q are carried out using Simpson's rule and a 100-
point mesh. While I report the detailed results here
for the case r = —5, u = 0.1, a (0) = I, and To
=100 (T, =107r), the qualitative behavior I have
found persists for other choices of parameters and ini-
tial conditions.

The time evolution of the system shows three dis-
tinct regimes. In the earliest time regime t & 0.01 the
average kinetic energy, G(l), drops from its initial
value of 1.68&10 to a value of 2.41 for t=0.01. The
short-range order parameter S ( r) changes very little
over this time regime from an initial value of 457.85 to
456.98 at r =0.01. The scale factor a has grown from
1 to e 9 during this period. The energy density re-
flects the drop in the kinetic energy as well as in the
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FIG. 1. The logarithm of the Robertson-Walker scale fac-
tor a(t) and the short-range order parameter S(r) are plot-
ted vs time for the case r = —5, u =Q. l, a(Q) =1, and
Tp = 100.

Note that S, G, and p are changing with a rate (0.15)
much less than H —200. For times greater than 15, S
approaches (see Fig. 1) its equilibrium value S
=

I
r I/u = 50, and G and p are slowly decaying to zero.

A careful look at the data shows that one has damped
oscillations for S(t) in this regime corresponding to a
frequency coo= (2lrl)'l =410. For t & 15, G(t) os-
cillates with a frequency coo/2. For times t ) 15 the
scales factor a grows much more slowly [the best fit is
to a power law a (t) = exp(656. 6) t' ].

Because of the red-shifting terms, q /a, one finds
that as a(t) increases, the q dependence of C(q) is
quickly quenched in (becomes time independent) ex-
cept for an overall multiplicative constant proportional
to S(r).

The basic picture we arrive at is that there is strong
inflation over an intermediate time regime followed by
the system locally ordering near a value of
= (Ir I/u)' '= [(Q (x)) ]' near the bottom of the
potential well with some oscillations about the bottom
of the well. The spatial structure in the problem
should be viewed in terms of the physical distance
scale x~ = a ( t) x and physical wave number k = q/a ( r).
The associated correlation function C~ (k) = a 3(t)
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&& C (ka (t), t) clearly goes over to a Bragg peak C (k)
= (&7r) &(k) mE in the limit ct(t) ~. mg is just
the "equilibrium magnetization" squared [mz
= ( I r I/u)' ] which is identified from

C (k) = J C(q, t) = S(t) m .
2~ ' ' 2~ '

We also conclude that a typical domain size, which can
be defined as the inverse of the width of the Bragg
peak (see the discussion in Ref. 7), is just proportional
to the scale factor a ( t) . Thus for spatial scales
x « a(t)xo, the system looks as if it has long-range
order.

While I have presented results for a particular set of
parameters and initial conditions, there is nothing at
all special about the choices I have made —nothing
needs to be adjusted to obtain inflation followed by a
quasistationary state. Note that the picture presented
here differs considerably from the scenario presented
elsewhere. I do not find a system that is initially
"frozen" with Q(x, t) =0. Instead, there are large
fluctuations in P(x, t). The inflationary period de-
velops because the scale of these fluctuations does not
change rapidly with time. We also note that because of
the strong-nonequilibrium nature of the problem, we
cannot sensibly treat the problem as being in local
equilibrium at any time. Certainly the notion of an ef-
fective temperature and a sharp transition near T, is
nowhere to be found.
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