Investigation of the Magnitude and Range of the Ruderman-Kittel Interaction in $SmRh₄B₄$ and $ErRh₄B₄$

B. D. Terris, K. E. Gray, and B. D. Dunlap

Materials Science and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 28 January 1985)

The superconductive and magnetic transition temperatures taken together are shown to provide a unique probe which separately determines both the magnitude and range of the Ruderman-Kittel interaction in the RRh₄B₄ magnetic superconductors ($R = Er$, Sm). Experimentally, an unexpected peak is found in the antiferromagnetic-ordering temperature of SmRh₄B₄ versus electron mean free path, while for $ErRh₄B₄$ the ferromagnetic-ordering temperature decreases monotonically. These qualitative features, as well as the quantitative differences between $SmRh₄B₄$ and $ErRh₄B₄$, are in excellent agreement with calculations using a mean-free-path —dependent Ruderman-Kittel interaction.

PACS numbers: 75.30.Kz, 74.70.Dg, 75.50.Ee

We present a novel method for probing the details of the Ruderman-Kittel-Kasuya- Yosida interaction $(RKKY)$.¹ By studying the effect of disorder on the magnetic superconductors $ErRh₄B₄$ and $SmRh₄B₄$, we have investigated the behavior of both the magnitude and the range of the RKKY interaction. The *magni*tude of the RKKY interaction is probed by the on-site spin-flip scattering which affects the superconducting transition temperature, T_c , through pair breaking, while the magnetic-ordering temperature depends on the range of the oscillatory RKKY interaction as well as on its (on-site) magnitude. It was previously proposed that disorder reduces T_c because of disorder enhanced spin-flip scattering.² The exponential damping of the range of the RKKY interaction due to finite mean free path, l , is well documented in the literature.³ Hence, by measuring the disorder dependence of both the superconducting and magnetic transition temperatures, we are able to probe separately the two aspects of the RKKY interaction, and thus explain the detailed behavior of the magnetic-ordering temperature, T_M , in ErRh₄B₄ and the Neel temperature, T_N , in antiferromagnetic $SmRh₄B₄$. In our calculations, we have kept the Fermi momentum k_F and the dependence of *l* on resistivity the same for each material, us-

 $T_M = -\frac{k_F^3}{3\pi}N(E_F)\mathcal{J}^2(g_J - 1)^2J(J + 1)\sum_r F(2k_F r)\exp(-r/l)s(\mathbf{q}\cdot\mathbf{r}),$

where

$$
F(2k_{\rm F}r) = \frac{2k_{\rm F}r\cos(2k_{\rm F}r) - \sin(2k_{\rm F}r)}{(2k_{\rm F}r)^4},
$$

 $N(E_F)$ is the density of states at the Fermi surface, g_I the Landé g factor, J the total angular momentum, and the sum is over the magnetic-ion lattice sites, The quantity $s(\mathbf{q} \cdot \mathbf{r})$ gives the sign of the spin direction at the position r for a presumed magnetic ordering described by the vector q. We have taken

$$
s(\mathbf{q}\cdot\mathbf{r})=\cos(\pi xq_x/a)\cos(\pi yq_y/a)\cos(\pi zq_z/c).
$$

ing values which are very close to previous estimates and free-electron values.

Both T_c and T_N (T_M) for the antiferromagnetic superconductor, $SmRh₄B₄$, and the ferromagnetic superconductor, $ErRh_4B_4$, ⁴ have been studied previously as a function of radiation damage (which induces disorder and shortens *l*). In each material T_c was found to decrease as a function of radiation dose, though much faster in SmRh₄B₄. A model² has been suggested which explains this as an enhancement of the onsite exchange interaction $\mathscr J$ through a new disorder effect on superconductivity due to the presence of magnetic moments. However, the magnetic transition temperature was found to decrease with dose in $ErRh₄B₄$, and to peak with dose in $SmRh₄B₄$, whereas the disorder-enhanced ℓ model would predict only an increase.

In addition to increasing the magnitude of the RKKY interaction, via the enhancement of \mathscr{I} , disorder will also reduce the range of the RKKY interaction. de Gennes⁵ proposed that for finite *l*, the RKKY interaction, which is given by the product of the onsite interaction $\mathscr F$ and an oscillatory term, will also be damped by $\exp(-r/l)$. In a mean-field approach, the Curie-Weiss temperature (T_M for ferromagnetic and $-T_N$ for antiferromagnetic systems) is given by ⁶

Thus $q = (0, 0, 0)$ corresponds to ferromagnetism, and other q values to various types of antiferromagnetism. For antiferromagnetic $SmRh₄B₄$, the results are relatively insensitive to the choice of q, as discussed below. To test this model, l was determined for various samples from the residual resistivity with use of the free-electron model⁷ for $ErRh₄B₄$ (films⁴ and bulk⁸), and for SmRh₄B₄ bulk.⁹ For the SmRh₄B₄ $\lim_{n \to \infty}$ is variant above in the resistivity ratios (r_R) , under the assumption that SmRh₄B₄ and ErRh₄B₄ films with the same r_R would have the same

I. After computation of the RKKY sum, it was found that the best fit was achieved by the universal increase of *l* to \sim 12% above its free-electron value.

Plots of T_c and T_N versus disorder (which is represented by $1/l$) are shown in Fig. 1 for a bulk sample⁹ and radiation-damaged thin films of SmRh₄B₄. Also included are T_N for each sample as calculated (pluses) by the procedure outlined below. Experimentally, T_N comes from the inflection point in the superconducting critical field curve (see Ref. 2). Since previous work showed that ℓ increases with disorder, part of the initial increase of T_N vs $1/l$ can be attributed to changes in the on-site interaction $\mathscr J$ through Eq. (1). The value of ℓ for each sample is chosen to achieve the experimentally determined reduction of T_c from T_{c0} by use of the Abrikosov and Gorkov theory with crystalline electric fields (CEF) included, ¹⁰ where T_{c0} = 8.95 K is the expected value for "nonmagnetic" $T_{c0} = 8.95$ K is the expected value for "nonmagnetic"
SmRh₄B₄.¹¹ (The overall conclusions, which depend only on the *relative changes* in $\mathcal I$ with disorder, would be unchanged if we were to omit CEF or use the $T_{c0}=11.4$ K of LuRh₄B₄. Small changes in k_F , as discussed below, can easily compensate for changes due to different choices of CEF or T_{c0} .) To account for $\mathscr J$ and the de Gennes factors, T_N and T_M are normalized
by $(g_J - 1)^2 J(J + 1) \mathcal{J}^2$ and plotted in Fig. 2 (with use of $T_{c0} = 9.9$ K for ErRh₄B₄). The presence (absence)

of a peak in T_N for SmRh₄B₄ (T_M for ErRh₄B₄) can be understood from the oscillatory nature of the RKKY interaction, with use of a simple shell model, Assume the nearest- and next-nearest-neighbor contributions to the sum are antiferromagnetic and ferromagnetic, respectively, for $SmRh₄B₄$. Then since the *next*nearest-neighbor contribution dies out quicker as a result of $exp(-r/l)$, the *net* antiferromagnetic interaction can be initially enhanced. For larger $1/l$, the nearest-neighbor antiferromagnetic contribution is decreased sufficiently such that T_N decreases. For the ferromagnetic $ErRh₄B₄$, both nearest- and nextnearest-neighbor contributions are ferromagnetic, in this model, since nearest-neighbor contributions are reversed because the spins are all parallel. Therefore, T_M is expected to decrease and this is shown in Fig. 2.

A number of comments should be noted concerning the above calculations:

(i) The only adjustable parameter is k_F , and the values of k_F were obtained by first choosing k_F of $SmRh₄B₄$ to fit the data in the clean limit, and then adjusting k_F of ErRh₄B₄ so that the relative magnitudes of the calculated curves match experiment. The value found for both $SmRh₄B₄$ and $ErRh₄B₄$ is 1.568 \AA^{-1} , which is in close agreement with previous estimates¹²

FIG. 1. The superconducting (T_c) and antiferromagnetic (T_N) ordering temperatures for bulk SmRh₄B₄ (open circles) and films (filled circles) vs inverse mean free path $(1/l)$. The pluses are calculated values of T_N , scaled to match the experimental bulk value.

FIG. 2. The magnetic ordering temperatures $(T_M$ for Er Rh_4B_4 , T_N for $SmRh_4B_4$) divided by the de Gennes factor and the exchange interaction f^2 vs inverse mean free path $(1/l)$. The open circles are for bulk samples (Refs. 8 and 9); the filled circles for films (Refs. 2 and 4). The calculated values are shown by the solid lines, as described in the text, and scaled at *one* point, the bulk value of $SmRh₄B₄$.

of 1.6 \AA^{-1} . For SmRh₄B₄, a small increase (\sim 0.001 A^{-1}) in k_F produces a large increase in the slope $(x 2)$ of the downward turn for small $1/l$. Small changes in k_F also produce overall vertical shifts in both curves, but do not affect the slopes in the dirty limit. An increase in k_F of ErRh₄B₄ of \sim 1% shifts the curve downward by \sim 30%. Therefore, while calculation of exact values for the magnetic transition temperatures would be sensitive to k_F , our description of the general features is not. Also, since many approximations are used, the absolute precision of k_F is artificial and the absolute values of T_M and T_N from Eq. (1) are not reliable.

(ii) The lattice sum requires the magnetic ordering vector q. For ferromagnetic ErRh₄B₄ clearly q $= (0, 0, 0)$, while for antiferromagnetic SmRh₄B₄, the q is unknown. We have assumed it to be $(1,1,1)$, but other choices of q , such as $(0,0,1)$, yield similar results. The signs of the calculated sums were found to be consistent with the chosen q, i.e., the sum for ErRh484 predicted ferromagnetism and that for SmRh484, antiferromagnetism.

(iii) In the above analysis, modifications to the RKKY interaction based on superconductivity¹³ have been ignored. This is strictly valid for $SmRh₄B₄$ since T_N was measured at the normal-superconducting (second-order) phase transition at H_{c2} , i.e., in the normal state. Tunneling measurements¹⁴ on such films reveal essentially the same Néel temperature in the superconducting state indicating that modifications¹³ to the RKKY interaction, at least in this case, are small. This is perhaps due to strong spin-flip and/or spinorbit scattering reducing the effect of superconductivity on the RKKY interaction.¹⁵ For ErRh₄B₄ the experimental situation is complicated by the first-order transition at T_M . In addition, the difference in RKKY interaction between the normal and superconducting states may be expected to be greater than in $SmRh₄B₄$, since the spin-flip scattering is weaker in $ErRh₄B₄$, and since superconductivity is expected to have a greater effect on ferromagnetism.¹³ This general contention is supported by lattice-sum calculations for this system, using the RKKY interaction as modified by the presence of superconductivity.¹⁶ However, normal-state magnetization measurements on $ErRh₄B₄¹⁷$ sugges that the effect of superconductivity on T_M is not large in this case either.

(iv) Crystalline electric fields are known to play a role in determining the magnetic properties of these materials, 18 resulting in magnetic anisotropies. This lowering of magnetic dimensionality can lead to an enhancement of the magnetic transition temperature.¹⁹ Hence, changes in the CEF due to disorder may play some role in the variation of T_M or T_N . This has not been included, since there is no clear way to model the effects of disorder on the CEF.

(v) The exact nature of the radiation-induced disorder is unknown. The behavior of T_c vs r_R is the same in the as-made and radiation-damaged films, and x rays of the damaged films show no change in the amount of trace impurity phases as a function of dose. This suggests that the disorder is in the $SmRh₄B₄$ phase grains.

In conclusion, we have investigated the details of the RKKY interaction by looking at both the superconducting and the magnetic transition temperatures of $ErRh₄B₄$ and $SmRh₄B₄$. We have found a novel method for separately studying the magnitude and range of the RKKY interaction. The magnitude $\mathscr J$ is probed by the behavior of T_c while the range is probed by T_M . A peak in T_N vs l is found for SmRh₄B₄ and is shown to result from the competition between nearest-neighbor (antiferromagnetic) and next-nearest-neighbor (ferromagnetic) interactions.

The authors would like to thank Patrick Lee for the suggestion to pursue this approach. We would like to thank Art Fedro for helpful discussions and Steve Lambert for providing unpublished data. This work was supported by the U.S. Department of Energy.

1M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); T. Kasuya, Prog. Theor. Phys. 16, 45 (1956); K. Yosida, Phys. Rev. 106, 893 (1957).

2B. D. Terris, K. E. Gray, R. T. Kampwirth, J. Zasadzinski, and R. Vaglio, Phys. Rev. B 30, 5370 (1984).

 3 See, e.g., R. C. Young, J. Phys. F 13, L239 (1984).

4J. M. Rowell, R, C. Dynes, and P. H. Schmidt, Solid State Commun. 30, 191 (1979).

sP. G. de Gennes, J. Phys. Radium 23, 630 (1962).

⁶B. Coqblin, The Electronic Structure of Rare-Earth Metals and Alloys: The Magnetic Heavy Rare-Earths (Academic, London, 1977); D. C. Mattis, The Theory of Magnetism (Harper & Row, New York, 1965).

7C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976).

8L. D, Woolf, D. C. Johnston, H. B. MacKay, R. W. McCallum, and M. B. Maple, J. Low Temp. Phys. 35, 651 (1979).

9H. C. Hamaker, L. D. Woolf, H. B. MacKay, Z. Fisk, and M. B. Maple, Solid State Commun. 32, 289 (1979); S. E. Lambert, private communication.

10Peter Fulde, L. L. Hirst, and Alan Luther, Z. Phys. 230, 155 (1970).

IiH. B. MacKay, L. D. Woolf, M. B. Maple, and D. C. Johnston, J. Low Temp. Phys. 41, 639 (1980); W. Odoni, H. R. Ott, and M. B. Maple, J. Low Temp. Phys. 51, 505 (1983).

 $12K$. Kumagai and F. Y. Fradin, Phys. Rev. B 27, 2770 (1983).

¹³B. I. Kochelaev, L. R. Tagirov, and M. G. Khusainov, Zh. Eksp. Teor. Fiz. 76, 578 (1979) [Sov. Phys. JETP 49, 291 (1979)]; W. A. Roshen and J. Ruvalds, Phys. Rev. B 27, 2770 (1983); A. J. Fedro and J. E. Robinson, Phys. Rev. B 30, 5336 (1984).

¹⁴Ruggero Vaglio, B. D. Terris, J. F. Zasadzinski, and K. E. Gray, Phys. Rev. Lett. S3, 1489 (1984).

 15 Kazushige Machida and Takeo Matsubara, Solid State Commun. 31, 791 (1979).

16B. D. Dunlap and A. J. Fedro, to be published.

¹⁷F. Behroozi, G. W. Crabtree, S. A. Campbell, M. Levy, D. R. Snider, D. C. Johnston, and B.T. Matthias, Solid State Commun. 39, 1041 (1981).

18B. D. Dunlap, L. N. Hall, G. W. Crabtree, and D. G. Niarchos, Phys. Rev. B 29, 6244 (1984).

¹⁹D. R. Noakes and G. K. Shenoy, Phys. Lett. 91A, 35 (1982).