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Critical Behavior of the Isotropic Ferromagnetic Quantum Heisenberg Chain
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The thermodynamic Bethe-Ansatz equations for the isotropic ferromagnetic 5 =
2 Heisenberg

chain have been solved numerically. At low temperatures, I find a power-law dependence on T for
the specific heat and the susceptibility with critical exponents o. = —0.49+0.02, y =2.00+0.02,
and 5 = y. The exponent a is compatible with effective spin waves and y and 4 are the exponents
of the classical chain. Amplitudes and corrections to scaling are obtained and differences with pre-
vious results are discussed.
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I consider the isotropic quantum Heisenberg chain
(s =-,')

with W sites and periodic boundary conditions in the
limit% ~. For ferromagnetic coupling (J & 0) the
model has a zero-temperature critical point, i.e. , the
ground state is ferromagnetically ordered, but there is
no long-range order at any finite temperature.

The critical behavior of the ferromagnetic S = —,
'

Heisenberg chain has been investigated previously by
several authors: Bonner and Fisher' studied the ther-
modynamic properties of rings of size up to A'=11
and obtained —o. = 0.45—0.50 and y = 1.8; Baker,
Rushbrooke, and Gilbert2 computed the high-
temperature series expansion and analyzed the energy
and magnetic susceptlblllty by means of Pade apploxl-
mants (y =1.66+ 0.07); and Cullen and Landau3 (y

= 1.32) and Lyklema [ —u = 0.3 + 0.1, y = 1.75
+ 0.02, (y —I )/v = 1.01 + 0.01] performed Monte

Carlo simulations for the problem.
The above results indicate that y differs from the

classical analog, y,~= 2, and Lyklema's Monte Carlo
data exclude o. = —0.5, the value expected from spin
waves. These interesting results lead me to reanalyze
the critical behavior of the ferromagnetic chain by a
different method, namely, the numerical solution of
the thermodynamic Bethe-Ansatz equations. In con-
trast to other methods, the Bethe-Ansatz provides the
exact solution of the problem.

On the basis of Bethe's famous work, Takahashi6
and Gaudin derived the thermodynamic Bethe-Ansatz
equations. They consist of an infinite set of nonlinear-
ly coupled integral equations for functions q„(A),
which characterize the string excitations of order n

with real rapidity A. There are several equivalent sets
of integral equations yielding the t„Y(A). The most
convenient representation for a numerical solution is
the recursion sequence

Inq„=G in[(1+q„,)(1+vi„+,)]—2m'„, (J/T)G, n =1, 2, . . . , gp=0, (2)

We consider J =- —1 throughout the rest of the paper.
The zero-temperature (strong coupling) and high-

temperature (free spin) solutions of the integral equa-
tions have been explicitly obtained by Takahashi. In
the critical region the solution is an interpolation
between these free-spin and zero-temperature limits.
For a very large string index n the free-spin solution

q„= tsinh [ (n + I )xp]/sinhxp) ' —1 (6)

where the center star denotes a convolution and

G (A) = [4cosh( —,
' vrA) ] (3)

These equations are completed by the asymptotic con-
dltlon

lim n 'Ing„(A) = &/T=xp ) 0,

and the free energy of the model is given by

8= —J ln2 —T dA 6 A ln 1+q&

t is reached, as a consequence of the asymptotic condi-
tion (4). Expression (6) is also reached for small n
and sufficiently large rapidity values, A, since the driv-
ing term decreases exponentially with A. On the other
hand, the small-index and small-4 regime, where the
driving term is most effective, is determined by the
strong-coupling solution. The index n and the value of
A at which the crossover between the T = 0 and the
free-spin solutions takes place are a function of T.

The lower the temperature, the more integral equa-
tions are needed in order to reach the free-spin solu-
tion (6) within a given accuracy. In principle, an infin-
ite number of integral equations should be considered
in the critical regime. My procedure to solve the infin-
ite set of integral equations is the following. I chose
an index no and replaced q„ for n & no by the asymp-
totical expression (6), and then solved numerically the
system of no integral equations. The procedure is re-
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peated for several no and the result extrapolated to

no ~. For the lowest temperatures, I considered no
up to 280.

The integration interval for the convolution is in
principle the entire real axis. The integration, howev-
er, simplifies as a result of the exponential decrease of
the kernel. For large A, the function q„approaches
the asymptotic expression (6) such that we can replace
q„by (6) for ~A~ & Ao. The range for Ao depends
strongly on the temperature and on the nz considered.
The results are then extrapolated to Ao ~. At very
low T and large no I considered Ao up to 150.

The set of integral equations has been solved itera-
tively, the convergence being slow for large no. The
data were analyzed as a function of the number of
iterations and extrapolated to obtain the converged
solution.

We determine o. from the entropy, 5, which in the
critical region depends on temperature as T and is
obtained by numerical differentiation of the free ener-
gy. It is easily seen that the slope in Fig. 1, which
determines n, depends on the temperature. This is
explicitly shown in the inset, where the slope is plotted
between neighboring points as a function of the mean
temperature T. The extrapolation to T = 0 leads to the
value

o. = —0.49+ 0.02,

which is in good agreement with the finite-size extrap-
olation of Bonner and Fisher' ( —n = 0.45—0.50) and
with the free-magnon result n= —0.5. The Monte
Carlo4 value n= —0.3+0.1 was obtained in the tem-
perature range between 0.025 and 0.1 and not from the
asymptotic scaling region.

For the rest of the paper we assume that o. = —0.5.
Plotting ST ' as a function of T we obtain, extrapo-

0.I+

lating to T = 0, that the amplitude of the leading power
is 1.50+0.03. The correction to scaling can also be
obtained from this plot by consideration of the slope
between neighboring points, i.e. , A(ST ' 2)/b, T,
where 5 denotes increment. This is shown in Fig. 2,
where the slope at low temperatures determines the
exponent of the first correction to scaling, co=0.5
+0.1. The amplitude of this correction to scaling is

also obtained from Fig. 2, being 1 if m=0. 5, 1.75 if
t0=0.4, and 0.56 if co=0.6. The most probable ex-
pression for the critical behavior of the entropy is then

which is displayed by the solid line in Fig. 1. The
small discrepancy at low T is attributed to the next
scaling correction, which is expected to be linear in T.
If we assume a correction of + 2T the curve lies on top
of the low-T points.

In the critical region the susceptibility diverges with
a power law of the temperature, X —T ". The
present data for diverging quantities are less accurate
than for the entropy. I calculated X by numerical dif-
ferentiation of the free energy with respect to the mag-
netic field. In Fig. 3, the open triangles represent the
Bethe-Ansatz data, while the dots correspond to
Lyklema's4 5 Monte Carlo simulation. The agreement
between the two methods is excellent (filled triangles).

Again the slope in Fig. 3 is a function of T. This is
explicitly shown in the inset, where the slopes between
points are plotted against the mean T. There are two
regions: For T & 0.02 the slope decreases rapidly, but
for T ) 0.02 the slope is approximately y =1.7-1.8.
The previous calculations' refer to the latter tem-
perature range. The extrapolation to T = 0 depends on
the power of the correction to scaling. From previous
arguments, as in the paper by Aharony and Fisher,
one expects a correction to scaling linear in T. The ex-
trapolated critical exponent is then

y = 2.00+ 0.02,
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FIG. 1. Data points for the logarithm of the entropy vs
lnT. The slope is temperature dependent, as shown in the
inset. The full line corresponds to Eq. (7), while the dashed
line represents the leading power, S =1.5T' . A better fit
can be obtained by adjustment of the amplitudes; however,
higher-order scaling corrections have been omitted, The
curve in the inset is just a guide to the eyes.

1
0 0.01 002

L T
0.05 010

FIG. 2. Logarithm of the variation of ST ' ' with tem-
perature vs lnT. The slope at low T yields the power of the
first correction of scaling. The line corresponds to a slope of
0.5.
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FIG. 3. Logarithm of T'g vs lnT. The open triangles are
the solutions of the Bethe-Ansatz equations which agree ex-
cellently with Lyklema's (Ref. 4) Monte Carlo data
represented by the dots (the filled triangles are open trian-
gles plus dot). The curve represents Eq. (8). The slope is a
function of T as shown in the inset. The solid line in the in-
set is only a guide to the eyes.
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FIG. 4. Logarithm of T times the fourth-order field sus-
ceptibility as a function of ln T. The slope between neighbor-
ing points is shown in the inset (dots, with error bar). The
filled triangles correspond to 3 times the slope in Fig. 3 for
the same temperatures. The plot suggests 4 = y. The lines
are only guides to the eyes.

i.e., the classical and quantum chains have the same
exponent y. The amplitude of the leading power is
0.202 + 0.004 and the one of the correction to scaling,
11+2. The curve in Fig. 3 represents

g T2= 0.2+ 2.2T.

Sources for the difference with the data points are the
error in the amplitude to the correction and neglected
higher-order corrections of the type T and T .

The exponent b characterizes the critical behavior of
higher field derivatives. It is substantially more diffi-
cult to obtain b than y. The fourth field derivative,
X —T ~ ~, is shown in Fig. 4. Again, the slope of
the plot is temperature dependent. This is explicitly
seen in the inset, where slopes between neighboring
points are compared with 351n(T2X)/b, lnT for the
same temperatures. Within the numerical accuracy
the value for 4 reached asymptotically as T 0 is
then A=y.

The relations among the critical exponents for a
zero-temperature critical point are different from the
usual ones where T, ~O. Using the scaling and hyper-
scaling assumptions, Baker and Bonner' stated for
T, = 0 that (i)

y =1+ (2 —q)v,

Since in the ground state of the ferromagnetic Heisen-
berg chain all spins are aligned, the spin-spin correla-
tion function is independent of the distance, q = 1, and
the magnetization is independent of the field, 5 = ~.
Relations (i)—(iii) then yield the exponent of the
correlation length v = y —1 = 1.00 + 0.02 and
The latter one confirms our extrapolation to T =0 in
Fig. 4. The relation (y —1)/v = 1 has been obtained
by Lyklema by means of a finite-size scaling analysis
of his Monte Carlo data.

The relation (iv), however, is not satisfied. The
breakdown of this scaling relation for a zero-
temperature critical point has been found previously,
e.g. , the classical Heisenberg chain.

Hence, the critical exponents of the classical and
quantum Heisenberg chains are the same, except for
the specific heat. This is then similar (except for n) to
systems with T, ~O, where quantal effects implied by
finite spin values do not seem to affect the critical ex-
ponents. " This is especially remarkable since for
S = —,

' and d = 1 quantum fluctuations are expected to
be the largest. The amplitude of the susceptibility in
the quantum case is, however, 7.5 times smaller than
that for the classical chain and the ones of the correc-
tion to scaling have opposite signs. The specific heat
of the classical chain is'

(tv)

5 = —,
' (dv+y+1),

o.s =dv

C„= 1 —(pJ) /sinh (pJ),
which yields o. =0 and o., = —~. Here the behavior
of the classical and quantum chains is qualitatively dif-
ferent. Although a naive spin-wave picture is not
valid, ' the exponent o. = —0.5 of the quantum chain
supports the description of the low-T low-energy exci-
tations in terms of effective spin waves.

To my knowledge, this is the first example of critical
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behavior of a quantum system extracted from the ther-
modynamic Bethe Ansatz. The strength of the method
is that it provides exact results in a temperature regime
so far not accessible by other methods.

The author is indebted to J. W. Lyklema for innu-
merable helpful and stimulating discussions, and ac-
knowledges receipt of a Deutsche Forschungsgemein-
schaft Heisenberg fellowship.
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