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Classification of Axisymmetric Vortices in He-A
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Singular vortex lines are predicted to occur in the rotating 3 phase when the superfluid is con-
fined in a parallel-plate geometry. A symmetry classification is introduced for the possible singly
and doubly quantized axisymrnetric vortices in He-3 in terms of the separate symmetries of the
vortex hard-core and soft-core matters.

PACS numbers: 67.50.I i

In rotating superfluid He-A, two different classes of
quantized vortices may arise, ' corresponding to topo-
logical charge N which may assume the values N =0
and N = 1. The vortices in the class with N = 1 are al-
ways singular; these vortices possess a hard core with
radius of the order of the Ginzburg-Landau coherence
length (, which contains a core fluid in a different
state —the normal or another superfluid phase —than
the bulk liquid. On the contrary, the hard core of the
vortices with N = 0 may be continuously dissolved and
these vortices acquire only a soft core of the order of
several dipole lengths gD = (102—10 )g, with the
bulk liquid phase everywhere. The Anderson-
Toulouse-Chechetkin vortex with two quanta of su-
perfluid circulation exemplifies the continuous vor-
tices in the class N = 0.

Even though the singly quantized vortices belonging
to the class with N = 1 were estimated to possess a
slightly lower free energy3 than the continuous doubly
quantized vortices, all the NMR signatures to date on
the vortices in the rotating bulk superfluid 3 phase
are only consistent with theoretical calculations which
assume continuous vortices. 5 This applies both to ex-
periments carried out with rotation started after cool-
down to the superfluid 3 phase and to those with con-
tinuous rotation through the superfluid transition tem-
perature, which were performed in a search for the
singular vortices.

In this Letter we suggest a way to generate singular
vortices in the 3 phase: singly quantized vortices
could be nucleated in rotating He-3 in a parallel-plate
geometry, where the plate spacing is of the order of
It:D', this serves to make the free-energy difference of
the vortices more pronounced. We introduce a sym-
metry classification for the possible vortex lines with
integer number m of superfluid circulation quanta. As
for the B-phase vortices and the continuous 3-phase
vortices, the most important symmetries which
govern the properties of the singular 3-phase vortices
are discrete, including the time T and space I' parities,

and space rotation U2 of the vortex line about a per-
pendicular axis. For the B-phase vortices which pos-
sess hard cores this gives five types of axisymmetric
vortices (o, u, v, w, u vw) with the same m, but with dif-
ferent broken discrete symmetries in the core.

The continuous A-phase vortex (which in an open
geometry has no axial symmetry as a result of the su-
perflow orientating the orbital anisotropy vector 1 in
the x-y plane outside the soft core) may exist in two
different states: v and ~. Since parity I' is broken in
the soft core of these vortices in different ways, the v
vortex possesses a spontaneous electric polarization,
while the ~ vortex has a spontaneous superflow along
the vortex axis.

A classification of the singular vortices in the 3
phase is more complicated than in He-B as a result of
the two length scales (( and (D) in the vortex-core
structure. We find that the discrete symmetry may be
broken in the hard core and in the soft core of the
singular vortices independently and in a different
manner: This produces a rich variety of the possible
vortex structures. The discrete-symmetry classifica-
tion of the vortices does not depend on the continuous
symmetry in an essential way. Therefore, for the sake
of simplicity and clarity, we here confine ourselves to
the vortices with axial symmetry: It is likely that axi-
symmetry is indeed realized in the parallel-plate
geometry, where the orientation of the 1 vector by su
perflow is prevented by the boundary conditions.

In the parallel-plate geometry, with the plates nor-
mal to the axis of rotation Q, the 1 vector may be
orientated in two directions: parallel or antiparallel
with Q ~ The vortex structure depends essentially on
the orientation of 1 with respect to Q. Therefore, for
fixed (1=z) direction of 1, we shall consider the vor-
tices with both positive m = 1, 2 which arise for Q = 1,
and negative m = —1, —2 corresponding to Q = —1.

The possible elements of symmetry for the m-
quantum vortex can be found from the asymptotic
form for the vortex: The asymptotic form possesses
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A, =A„z e' @.
V2

(2)

Here @ is the azimuthal angle in the x-y plane.
Equation (2) has two continuous-symmetry groups,

with the generators S, and L, —(m + 1), where S, is
the generator of spin rotations about the z axis
(S,d = ie &,dp), and L, is the generator of orbital ro-
tations„ including the internal and external rotations
(L, = L,'"'+ L;"', L;"'= —i 8/Bp, L,'"'lii, =ie J,le~)
However, because of the spin-orbital coupling in the
soft core, the two symmetries cannot be conserved
separately. Therefore, the axisymmetric vortex solu-
tion should satisfy only one equation:

Q &., =0, Q =S,+L, —(m+1). (3)

The general solution of Eq. (3) is

A; = b, ~ g „a „)(.~X;",

(r)ei (m +1—p —v)$
P& Pl' f

(4)

where X;—= —,J2(x; +i y, ), X; = z, are the
spherical eigenfunctions of L, and S, with eigenvalues
1 and p, , and the C „(r) are functions of radial dis-
tance r from the vortex axis. In the soft-core region,
but outside the hard core, r )& g, the A-phase state of
Eq. (1) is undisturbed. Hence the parameters C„„

l

the maximal symmetry, which may then be broken in
the soft or hard cores. Outside the soft (dipole) core,
where 1 is fixed by the boundary (1=z), and the mag-
netic anisotropy axis d is parallel with 1 as a result of
the spin-orbital (dipole) coupling, the order-parameter
matrix, which for the 3 phase has a factorized form

A"; =h~d lii;,

d'=1,
where Az is the 3-phase energy gap, and i and o,

denote the spin and orbital indices, is given by
p, = p(U. ) +', p, = TU, U., p, = p,p, . (6)

Here p, with pA; = —A, ( —r), and T, with TA
=3;, are the space and time inversions; U2 ——0„ is
a rotation (by angle m around axis x) which reverses
the vortex axis, and U denotes a gauge transforma-
tion, which changes the sign of the order parameter

but does not influence any measurable physical
quantities. The amplitudes C„„ in Eq. (4) are
transformed under the symmetry elements in Eq. (6)
as follows:

p C ( 1 )p, +v+1C

P C ( I)P+v+1Cv

Let us first consider the structure of the most-sym-
metric 0 vortex, with all of the discrete symmetries,
Eqs. (6) and (7), conserved. In the soft-core region,
but outside the hard core, r &) g, where the order
parameter is given by Eq. (5), the symmetry con-
straints yield for the o vortex the same structure as
outside the soft core; i.e. , the asymptotic form of Eq.
(2) is carried all the way through the soft core and be-
comes the asymptotic form for the hard-core structure.
In the hard-core region where the dipole energy may
be neglected, both of the continuous-symmetry groups
[with the generators S, and L, —(m + 1) ] are
separately conserved, and one has the additional con-
straint S,A„„=O. In conjunction with the constraints
of discrete symmetry, this yields the following struc-
ture for the o vortex with m quanta of circulation in
the entire range of r .

P2C„,= C'„
(7)

may be factorized as follows:

C „=a b„, d= g„a„(r)A."e'"~,

(„)) vei (m —v+1)y (5)

where the functions a„(r) and b„(r) fulfill the condi-
tions a„=a'„, g„~a ~

=1, g„b„b,=0, and
g„~b„~ =1, following from Eq. (1).

The number of these parameters may be reduced by
taking the discrete symmetry into account. The
discrete symmetries of the asymptotic form, Eq. (2),
include the three elements

x; +l y; . x; Iy.
z Co+- e' + Co e'

42
where Co+ and Co are real with Co+ J2 and
Co 0 for r )) g. Note that the fluid is normal on
the vortex axis [C„„(0)=0] for all the o vortices, ex-
cept the 0 vortex with m = —2: Only in the latter vor-
tex the singular phase factor e' + @ becomes regular
and Co is not forced to vanish on the axis. This cor-
responds to the A phase in the vortex core with re-
versed direction of 1= —z.

As a rule, it is more advantageous to break one of
the discrete symmetries in Eq. (6). This gives rise to
the u, v, or ~ vortices with respective symmetries P],

P2, or P3, and to the u v~ vortex which has no discrete
symmetry. However, this classification is very rough
for the 3-phase vortices with two different cores and is
only rigorous for the continuous vortex which has just
one core, the soft core, where the 3-phase state is not
distorted. The axisymmetric continuous vortex may
be constructed only from the 0 vortex with m = —2,
which contains 3 phase with 1= z outside the soft core,
and with 1= —z on the vortex axis. To match the 2
phase in the intermediate region, one has to construct
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a nonuniform l texture and therefore break space-
parity P. Thus the continuous axisymmetric vortex
may be in three states: the Pz-symmetric v vortex, the
P3 symmetric w vortex, and the least-symmetric u v w

vortex.
The continuous v vortex with m = —2 is nothing

but the Anderson- Toulouse-Chechetkin texture. In
terms of v, and 1 lid, this texture has the following
representation:

I = z sing(r) + r cosy(r),

v, = (i1 /2m 31' ) [ 1 + sin7l ( r) l qb.

Here q(r) varies from —7r/2 on the vortex axis to 7r/2
outside the soft core. The signs + indicate the two-
fold degeneracy of the vortex.

As distinct from the v vortex, the continuous w vor-
tex with m = —2 displays a twisted l texture:

1=z sing (r) + qb cosy (r),
v, = —(h/2m 3r ) [1+sing (r) ]@.

To facilitate a further fine classification of the vor-
tices with two types of cores one needs to specify the
region where the symmetry breaking takes place.
There are four important regions to consider in such
vortices: Region I of the asymptotic form, r )) gD,
with total o symmetry; region II of the soft core,
r ——gD; region III of the intermediate asymptotic
form, gD )) r )) (; and, finally, region IV of the
hard core, r = (. The discrete symmetry which is bro-
ken in the soft core, may in principle be restored in re-
gion III and then again broken in region IV, but in a
different way. Therefore, there exists a large number
of different vortex substates, which we specify by a
code of three letters, corresponding to the symmetry
in regions II, III, and IV, respectively. For example,
the least-symmetric uvw vortex state may be in the
substate u-o -w (which has the symmetry P2 in the soft
core, the total symmetry o in region III, and symmetry
P3 in the hard core) or in the substates w -o -u, u-U-
uvw, etc. The Pz-symmetric v-vortex state may con-
tain four different substates: v-v-v, v-o-o, v-o -v, and
o -o -v, and the P3-symmetric state w has the four sub-
states w -w -w, w -o -o, w -o -w, and o -o -w.

However, the most interesting classification is found
for the vortices with m = —1. Since 5, +L, = 0 for
this vortex class [see Eq. (3)], new elements of
discrete symmetry may appear in region III of the in-
termediate asymptotic form. As elements of the o
symmetry in Eq. (6), there also occur new elements
due to different combinations of the three basic
transformations T, P, and U~ (here we do not consider
U which does not influence any of the observable
variables: I, v„electric polarization, etc.) . Time-
inversion symmetry is broken in the 3 phase because
Tl = —1. Therefore, T may enter in a combined sym-

metry only. Hence there exist three different sets of
possible discrete symmetries for the asymptotic form
of linear defects in the 3 phase, which we denote the
o&, oz, and o3 symmetries:

P, TUz, PTUz,

Uz, PT, PTUz,

PUz, TUz, PT.

(1 la)

(11b)

(11c)

The 0& symmetry in Eq. (1 la) is our 0 symmetry [Eq.
(6)], which characterizes the vortices in the 3 and B
phases, while the symmetry o2 in Eq. (lib) and the
symmetry o3 in Eq. (11c) characterize a radial disgyra-
tion (I = r", v, = 0) and a tangential disgyration (1=P,
v, =0), respectively. Both have continuous symmetry
S, +L, =O and may thus serve as the intermediate
asymptotic form in region III of the vortex with
m = —1. We denote the most-symmetric defect with
the asymptotic form of a radial disgyration as the oz
defect and that with the asymptotic form of a tangen-
tial disgyration as the o3 defect; then, by x, y, and z we
denote the defect structures, obtained by breaking the
symmetries oz or o3, i.e. , the Uz-symmetric, the TP-
symmetric, and the PUz-symmetric linear defects,
respectively.

These new symmetries, Eqs. (lib) and (llc), give
two additional substates for the v-vortex state with
m = —1: v-oz-oz and v-oz-v, two substates for the w

vol tex. w 0 3 0 3 and w -o 3-w, and many additional
u v w vortices: v-o z-x, w -o 3-z, etc. For example, the
axisymmetric m = —1 vortex, calculated by Fetter,
Sauls, and Stein, which transforms to the radial dis-
gyration in region III and then to the polar phase'0 in
region IV is —within our classification —the substate
v-oz-oz of the v vortex. In regions III and IV the con-
straints imposed by the symmetry o2 in Eq. (lib)
[ U2C0„= ( 1 )"Co „=Cp„, TPU2CO„= CO„= CQ ]
require the following form for this v-o z-oz vortex:

A; = 4~z X„X;"Co„e

= Azz (az;+ibqb;), (12)

where the a(r) and b(r) are real parameters, both
tending to unity for r )) g. While the singularity in @
at the vortex axis forces the prefactor b (r) to vanish
in the limit r = 0, the coefficient a (r) need not vanish.
Therefore, the v-o z-o z vortex always contains polar
phase on the axis. Other superfluid phases may appear
if the continuous symmetries with the generators S,
and L, are broken in the hard core.

To summarize, axisymmetric vortex lines may ap-
pear in rotating He-3 only in the parallel-plate
geometry, and we presented a symmetry classification
of the possible vortex states. In addition to the con-
tinuous symmetries of the vortex, there are three
discrete-vortex-symmetry operations which lead to the
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possible existence of five different vortex states (o, u,
v, w, and uvre) for each m (m = + 1, m = + 2), as in
the 8 phase. However, for each of these vortex
states there emerges a new spectrum of fine structure,
which has been classified in terms of the separate sym-
metries of the soft and hard cores, producing a rich
variety of the possible vortex substates. The physical
properties of the vortices that are associated with the
broken discrete symmetries, such as the vortex mag-
netization, the electric dipole moment of the vortex,
and the possibility of spontaneous axial supercurrents,
are discussed in detail elsewhere; these properties
can help identify the vortices in an experiment.

In practice, one would employ a stack of maybe
several thousand parallel plates. The l vector in a
given spacing is independent from that in the other
spacings, and thus equally probable to point up or
down. %"here 1 points down, one could find singular
polar-core vortices with m = —1, or continuous axi-
symmetric Anderson-Toulouse-Chechetkin vortices
with m = —2. However, whenever the 1 vector points
up, axisymmetric vortices with m = 1 and I = 2 both
have normal-fluid core. To destroy the hard core of
the I =2 vortex, which belongs to the topological
class with X = 0, axial symmetry should be broken.
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