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Elastic Properties of Glasses
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It is believed that covalent glasses can be divided into two classes: those with high average coor-
dination (amorphous solids) and those with low average coordination (polymeric glasses). We
present the first conclusive evidence that this division is correct by calculating the elastic properties
of random networks with different average coordination (r). The results show that the elastic con-
stants depend predominantly on (r) and go to zero when (r) = 2.4 with an exponent f=1.5 +0.2.

PACS numbers: 61.40.Df, 62.20.Dc

The notion of overconstrained and underconstrained
glasses was introduced by Phillips! in 1979. This idea
was later put on a firm foundation by Thorpe? who en-
visaged a glass consisting of rigid and floppy regions and
a phase transition taking place as the mean coordina-
tion (r) is increased and rigidity percolates through the
network. In this Letter we present results of numeri-
cal simulations for the elastic moduli, and for the
number of zero-frequency modes f, of a series of
glassy networks. These two quantities couple most
directly to the phase transition. Our results show con-
clusively that there is indeed a phase transition when
the network has (r) =2.4 and that both the elastic
moduli and f depend predominantly on (r). The
ideas of Phillips and Thorpe can now be applied to real

V=1 2 aylu—u) 1,2+ 5 3 Bul(u—u,)-

(ij) (ijk)
where «; is a central force involving nearest neighbors
(i,j) and B is a Keating-type angular force involving
pairs of nearest neighbors (ij) and (ik). Before
describing the results of the simulations it is useful to
develop a mean-field theory for the number of zero-
frequency modes.°

When the coordination of the network is low, there
are many ways in which the network can be deformed
at no cost in energy because there is no term in the po-
tential (2) that couples directly to the dihedral angles.
Deformations are possible in which the bond angles
and bond lengths are unchanged. The number of
these deformations or zero-frequency modes is given by
the number of the degrees of freedom (3N) minus the
number of constraints. There is one constraint associ-
ated with each bond and 2r — 3 constraints associated
with the angles at each r-coordinated atom.>’ The
fraction fof zero-frequency modes is given by

f=0N-=3 nlr/2+@2r-3)1}/3N
=2—3(r),

where

(ry= Er rn,/E, n,
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covalent glasses with some confidence.

We consider covalent glasses (e.g., Si,O;_) to be
continuous random networks.> This model is widely
believed to provide an excellent description of many
glasses. Some of the results of this Letter would also
be applicable to models which use rafts, ribbons, finite
clusters, etc.*

Consider that a particular random network with N
atoms has been constructed with », atoms having r
bonds, where r =2, 3, or 4 for covalent networks and

>, n=N. (1)

This network is relaxed into the local equilibrium for
the given topology and small vibrations about this
equilibrium structure are described by a potential®

(2

+ (ui“uk) ‘r,j]Z,

is the mean coordination. It is important in applying
(4) that the network contain no dangling bonds.
Equation (3) is plotted as the straight line in the inset
in Fig. 1. For (r) =2, which corresponds to isolated
noninteracting polymer chains, f=+. As (r) in-
creases (which can be imagined as a crosslinking of the
polymer chains to form a network), f decreases and
goes to zero at (r) =r,=2.4. As negative values of f
are meaningless, we put f=0 for (r) > r, within this
mean-field theory.

Similar constraint-counting arguments have been
used by Feng, Thorpe, and Garboczi® to estimate
where fgoes to zero and hence where the phase transi-
tion takes place. They find that the mean-field theory
is remarkably accurate, when compared to direct calcu-
lations of both f and the elastic moduli, in dilute lat-
tices with central forces only.

The result, r,=2.4, was obtained by Dd&hler, Dan-
doloff, and Bilz’ and by Thomas® using the ideas of
Phillips.! For 2 < (r) < Ip, we have a polymeric glass
with rigid and floppy regions, but the rigid regions do
not percolate. For (r) >r,, we have an amorphous
solid in which the rigid regions percolate.?

We have performed numerical simulations for both
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FIG. 1. Elastic modulus C;; with 8/a=0.2 in units where
a=4aq and as a function of the mean coordination (r). The
three symbols are for three different series of random net-
works. The inset shows the number of zero-frequency
modes f (averaged over three networks) compared to the
result of the mean-field theory [Eq. (3)] shown by a straight
line.

f and the elastic moduli. It is rather difficult to build
large numbers of random networks, with varying coor-
dination, and so we have adopted the following ap-
proach which we believe captures the essential physics.

We start with a diamond lattice that has (r) =4 and
define a supercell which contains 512 (or 216) atoms.
We then randomly remove bonds, maintaining the
structure with periodic boundary conditions so that if a
bond is removed in one supercell it is removed in all
supercells. When a bond is removed, all the « and 8
terms associated with it are removed from the poten-
tial (2). At first only three-coordinated sites are creat-
ed, but with enough bonds removed, two-coordinated
sites are also created. No dangling bonds are permit-
ted.

In Fig. 2 we show a plot of n3/N against (r) for the
512-atom networks. Note that

(r)=(2n2+3n3+4n4)/N, (5)

where N = n,+ n3;+ n4 so there is one free parameter
in the process described in the previous paragraph.
The triangles and squares in Fig. 2 are ‘‘typical’’
results using different random numbers. In order to
test whether the properties of the network depended
mainly on (r) and not on other parameters, we de-
liberately picked one ‘‘extreme’’ configuration with an
enhanced number of two-coordinated sites »,, thereby
depressing n3 as shown by the circles in Fig. 2. As (r)
approaches 2, it became impossible to remove bonds
without creating dangling ends, so that we could not
explore the region (r) < 2.1.

Our calculations for the elastic moduli were done on
the 512-atom networks, but the calculations of fwere
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FIG. 2. Fraction of three-coordinated sites n3;/N as a
function of the mean coordination {(r). The three different
symbols represent the three different series of random net-
works as described in the text. The lines are for guidance of
the eye only.

done on the 216-atom networks of which we also gen-
erated three with statistics similar to those shown in
Fig. 2 (i.e., two were ‘‘typical”’ and one was ‘“‘ex-
treme’’). We computed f for all three classes of net-
work by directly diagonalizing the dynamical matrix
formed from the potential (2) and counting the
number of zero eigenvalues. There was no significant
variation between the three networks and the averaged
result is shown as the inset in Fig. 1. The agreement
with mean-field theory is very good. The tail around
r,=2.4 is somewhat larger than in central-force
models® but is still small. We do not expect f to be
precisely zero at r, as floppy regions still exist after the
rigid regions have percolated.

We have also computed the elastic moduli of these
systems. The three elastic moduli for the diamond lat-
tice are’

= %(C11+2C12)=#a(3a +B),
. ) 5 6)
(03
Cun= 4a (at3p),  Cus= a (a+B)°
and we choose B/a=0.2 which is a typical value for
covalent solids and a/+/3 is the nearest-neighbor dis-
tance.?

The elastic moduli are computed with use of stand-
ard techniques.®!® The 512-atom supercell is rede-
fined by an external strain € and the elastic modulus C
is obtained from the elastic energy 5 Ce? after the net-
work has been fully relaxed. This relaxation becomes
very difficult for (r) < 2.6 and we used extrapolation
techniques to obtain the behavior at longer times, ¢,
than could be probed. The long-time behavior seemed
to follow C (1) = C + D exp(—+t) and we used this to
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extract the desired asymptotic elastic modulus C. Here
time refers to the number of steps in the relaxation
process.

In Fig. 1 we show the results for Cy; (averaged over
the x, y, and z directions) for the three systems. It can
be seen that these are all very similar, although the cir-
cles lie a little above the other two. From this, and the
inset, we see that the elastic properties of the network
are determined, essentially entirely, by (r).!! This re-
markable universal result, implicit in the work of Phil-
lips, has many implications for glasses (e.g., low-
temperature specific heat, ultrasonic attenuation) that
will undoubtedly be explored in the years to come.

In Fig. 3 we show the three elastic moduli as a func-
tion of (r). It should be noted that both B and Cy4
show similar, although slightly larger, variations
between the three networks as shown in Fig. 1 for Cy;.
It can be seen that all the elastic moduli go to zero
around r, = 2.4 as predicted by mean-field theory.

We have made log-log plots of the elastic moduli for
2.4 < (r) < 3.2 and find a slope of 1.5 +£0.2. We have
also made a least-squares fit to the data in the same
range with an exponent of 1.5 and find that

C11=0.69(a/4a) ({r) — )3,

B=C44=0.35(a/4a)(<,~>__,.p)l.S. @)

We do not claim that the critical exponent is 1.5;
merely that the functional form (7) is appropriate over
a fairly large range. It does not fit the data well at
larger values of (r). In the central-force models,® the
data were linear over the whole range (corresponding
to an exponent of 1) with the possibility of a small
“‘tail”” near the phase transition corresponding to the
critical region. Similarly here there could very well be
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FIG. 3. Elastic moduli averaged over all three networks as
a function of the mean coordination (r) for 8/a=0.2. The
elastic moduli are in units where a« =4a and the solid lines
are from Eq. (7). The results for C;; and C have been
averaged over the x, y, and z directions.

deviations from (7) very close to r, in the critical re-
gion. We can refer to (7) as the mean-field behavior.?

Finally we note that the networks are cubic, not iso-
tropic. Initially when (r) =4 and B/a=0.2, the aniso-
tropy parameter A =(2C4y— Cy;+ C15)/Cyy is 0.33
but has dropped to 0.29 in the region covered by (7),
and drops rapidly to 0.10 for (r)=2.4. Indeed it
could very well be going to zero at r, but our results
are very noisy for (r) < 2.45 in the critical region.!
Such an isotropic result would not be unexpected as
the system probably consists of long thin rigid regions,
near r,, that interlace one another and the local
geometry becomes unimportant.!* If we do an average
over all the principle directions (100, 110, and 111)
with relative weights (6, 12, and 8) we find that

(v /(v}y =(Cyy+ FAC )/ (Coy— 3 ACyy)

(ry=4,

_J3.3 for
24<(ry<3.2, ®)

" |2.4 for

where v, is the longitudinal sound velocity and v, is
the transverse sound velocity.!’

Before beginning this work we had hoped to find a
more pronounced singularity in the elastic moduli at r,
which would facilitate experimental observation. In
real glasses, especially with small (r), dihedral angle
forces, van der Waals forces, etc., are needed to stabi-
lize the structure. These will add a small, weakly
(r)-dependent term to the elastic moduli shown in
Fig. 3.
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