
VOLUME 54, NUMBER 19 PHYSICAL REVIEW LETTERS 13 MAY 1985

Possibility of a Field-Induced Hexagonal Blue Phase in Cholesteric Liquid Crystals
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Phase diagrams of cholesteric liquid crystals in relatively weak electric or magnetic fields are cal-
culated. In very weak fields the helicoidal-phase region grows at the expense of the cubic blue
phases. A new phase, having a two-dimensional structure, is shown to appear at physically realiz-
able chiralities for fields exceeding E = 70/(Ae)' z kV/cm and H = 20/(AX) ' z Oe, where Ae (AX)
is the dielectric (diamagnetic) anisotropy. This structure exists between the disordered and cubic-
blue-phase regions in the phase diagram.

PACS numbers: 61.30.Gd, 64.70.Ew

The cholesteric blue phases (BP) appear in a narrow
temperature range immediately below the clearing
point in a variety of chiral liquid-crystal systems. An
early attempt to explain their existence theoretically
was made by Brazovskii and Dmitriev, 2 who suggested
a two-dimensional (2D) hexagonal structure. Such a
structure, however, is not consistent with experimen-
tal results' (in particular, the absence of birefringence)
and further theoretical works 5 showed that cubic or-
dering was the thermodynamically stable state.

%e present arguments indicating that in the pres-

ence of an applied electric or magnetic field the 2D
hexagonal structure may exist under appropriate con-
ditions. This is done in the context of Landau theory,
together with the assumption that the 2D phase occurs
in relatively weak fields. In this regime, the order-
parameter has essentially the same form as in the
zero-field case. Finally, the weak-field assumption is
shown to be justified.

Consider a uniform applied electric field E (in
statvolts/cm). The Landau free-energy functional
1S2, 4-6

I' = V 'Ji d r[ —,
' (ae;~+ cte;~i+ c2e;/;etji —2detjte;„e/„t) —Pe;/e/tet;+y(e;~) 1

—(87' V) 'E;Ej„d r e;J,

where

e,, (r) =e,, (r) ——,
' Tr(e )5t,

is the anisotropic part of the dielectric tensor e;J (r). In (1) a is proportional to a reduced temperature, ct, c2, d, P,
and y are temperature-independent parameters, e;J t

= t)e;~/Bxt, and summation on repeated indices is understood.
Thermodynamic stability requires that c~, y, and c~+ —, c2 all be greater than zero. For periodic structures

e0(r) =
Xhkt N / t2(eaJ-)e p[xi I(ht+xky+ lz)1,

with o. = h +k + I and N the multiplicity. Note that only the h = k= 1=0 Fourier component of e,j(r) con-
tributes to the electric field energy term in (1) and that this term therefore vanishes for the case of cubic sym-
metry.

For the helicoidal C phase E = 0 order parameter iss
r

[&c(r)]=— eo 0 —1 0 + e2 e c i —1 0 +cc. ,
1 1 t(qcz+ y)

0 0 2, 0 0 0,

(4)

where c.c. denotes complex conjugate. Our basic assumption is that this functional form of [ec(r)] is unchanged
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in weak fields, with, however, eo and e2 becoming E dependent. Denoting by eii, e| the dielectric constants paral-
lel and perpendicular to the nematic axis in a fully aligned specimen gives

eo = (e ii
—e i )/ J6 = Ae/Z6.

We consider 5» ) 0 and partially minimize Fby taking E= Ei„Se.tting BF/Bqc = 0 yields qc = d/ci and we scale F
using

e, = sp, , s =P/J6y, f= F/(P4/36/'), 4 t = (3y/P') a,

—,
' (g = (3y/p') ct, K = qc6g, e = (3y'/47rp') 'i'E,

to obtain

fc =
4 tpo+ 4 (t —~')p2+ (p o

—3pop2) + (po+ p2)' poe'— (7)

Setting 8fc/Bp, o = 'dfc/dp2= 0 determines the equilibrium value of the order parameter for given t, ~, and e2.

In our weak-field framework, the cubic BP free energies are E independent. We can therefore simply use results
obtained elsewheres 7 for these phases. On the other hand, the free energy of the helicoidal phase is lowered in a
weak electric field. Thus, an external field can change a cubic structure into a helicoidal one.

Consider now the 2D hexagonal structure. In the Brazovskii-Dmitriev model only qc&0 Fourier components
were included in e;, (r), in which case there can be no E dependence in the weak-field limit. However, there is, in
fact, a symmetry-allowed q =0 component in (3) whose tensor amplitude has its unique axis perpendicular to the
2D plane. 4 5 As before, we shall take the form of the order parameter to be identical to that for E=0. Upon ad-

ding the explicit external field term we obtain5 s

fH e tp'0+ 4 (t K jp2 32 p2 2 pop2 po+ 192 p2+ 8 pop 2+ 2 pop 2+ po 2poe .2 & f 2x 2 27 3 3 2 3 233 4 9 3 7 2 2 4 2

The field E now lies parallel to the structure's unique
axis and the order-parameter equilibrium value follows
from dfH /Bp, o='dfH /Bp, 2=0.

In an external electric field the disordered phase be-
comes nematic and its free energy is given by

fN=4tp p +p 2pe. (9)

In a weak electric field this has a minimum at
p, —O(e ) so that f~ —O(e ). Thus f~ is small.

Comparing (7) and (8), we see that free energy of
the Hm phase is lowered more by an electric field than
that of the helicoidal phase. This is the mechanism
that stabilizes the Hm phase.

Upon minimization and comparison of the free en-
ergies of the different structures, the phase diagrams
in Figs. 1 and 2 are obtained. In the first figure we
give, for different values of e, the (K, t) -plane phase
diagram. We find that the 2D Hm phase is thermo-
dynamically stable above et2h (~=1.3) =0.028. This is
shown from an alternative aspect in Fig. 2. Note that
the C-phase Bragg back-reflection wavelength A. c' is
related to our reduced variables by

h. (-"=4m ng~/x,

where n is the index of refraction. Using9'o n =1.6
and („=25 nm gives A. c"= 500/x', thus the optical re-
gion, which is of primary interest, corresponds to
0.6 & K & 1.4.

We now justify our use of the weak-field regime to

I

obtain Figs. 1 and 2. We do this by calculating a
rigorous lower bound to the field e&~ in which the
nematic (X) phase becomes thermodynamically stable.
It is well known that near this field strength distortions
in periodic structures cannot be neglected. "'2 Our re-
quirement is therefore that e,h be significantly smaller
than eg. We proceed as follows: (a) The X-phase
free-energy minimum is calculated exactly. (b) With
use of convenient approximations, the free energies of
periodic structures are found in the field region of in-
terest. We consider two cases, that of an undistorted
C phase and that of an undistorted Hm phase. These
free energies are necessarily greater than the true free
energy at any point in the phase diagram. (c) Equating
the results of (a) and (b), a field e~ is obtained which
satisfies eg & eg.

For (a) we use (9) and, from df~/Bp, =0, obtain

Equating fH = f~ then determines eg 0 (t, ~) with, of
course, e~H ( e~. An analogous procedure yields—2
ewe

These lower bounds e~c and e~H~ are shown in
Fig. 2. We find that etl, /eg & 0.27. In comparison
with experimental data, ' ' this bound justifies our
use of the zero-field order-parameter form to calculate
the Hm-phase threshold field.

All the above results apply equally well to the case
of an applied magnetic field H with the following re-
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FIG. 1. Thermodynamic phase diagram (chirality-temperature plane) of cholesteric liquid crystals for (a) e2= 0, (b)
e =0.018, and (c) e2=0.04.

placements:

X e,

(2V) 'H;H~JI d r X;J

(87r V) 'E;E Jtd r e;J, (12)

(3y2/P3 ) 1/2H~ ( 3y2/47rP3 )

[Of course, the phenomenological coefficients appear-
ing in (2) are order-parameter dependent and thus
change when a different choice is made. ] (p4/96 3)g

2 (13)

Turning to experiment, the relevant quantities are
(Ae)E2 and (AX)H . In many cholesteric systems
Ae = 0. 1 but this can vary considerably. ' On the oth-
er hand, b, X = 10 7 in all cases of interest. ' Noting
that the elastic energy density term —,

'
etc;~& in (2) will

appear in the scaled free energy of a uniaxial nematic
or racemic mixture as —', $2tp, (n; I) and that p, = —,

' at
the clearing point, we have for the corresponding
Frank constant
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FIG. 2. Thermodynamic phase diagram (applied field-
temperature plane) for chirality parameter K = 1.3. The
boundaries e~~ and e~H are lower bounds to the nematic
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region of the phase diagram.

(QJt) [H(Oe) ]2= 3.6x 1()2

For b, e = 0.1 and b, X = 10, (14) give E = 210 kVlcm
and H = 60 kOe as the threshold fields for a cholester-
ic system having a C-phase Bragg back reflection at
500 nm. Such field strengths are experimentally acces-
sible.

Summarizing, we have presented here arguments
for the existence of a new 2D hexagonal phasets in
cholesterics in an applied electric or magnetic field.
Verification of this phase's existence and studies of its
structure could lead to an improved understanding of
the complex behavior exhibited by cholesterics below
their clearing point.
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