
VOLUME 54, NUMBER 19 PHYSICAL REVIEW LETTERS

Physical Spectrum of Compactified Strings

13 MAY 1985

L. Dolan
The Rockefeller University, ¹wYork, ¹wYork 10021

and

R. Slansky
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 8 February 1985)

The single-particle states of compactified bosonic string theory are classified by a direct product
of a fundamental representation of the Heisenberg algebra for the noncompact flat dimensions and

an affine-g Lie algebra, where the rank of its Lie subalgebra g is the number of internal dimensions
and its identity depends on their length scales. The operators that create these states are explicitly
constructed in light-cone gauge. The massless particles lie in the adjoint representation of g.
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Some of the most attractive proposals for unifying
the low-energy elementary-particle interactions into a
single theory are formulated in D ) 4 space-time
dimensions. The d "internal" dimensions (d = D —4
in realistic models) are difficult to observe because,
for example, they form a small compact or finite-
volume space at each four-dimensional space-time
point. A D-dimensional field on this space is inter-
preted as an infinite set of (D —d)-dimensional fields,
where each of these corresponds to a term in the har-
monic expansion on the space of extra dimensions.
For the case D = 5 and d = 1, the extra dimension is a
circle, and there is one four-dimensional field for each
integer N. The four-dimensional mass squared then
goes as (N/R), where R is the radius of the circle. '

String theories have an infinite number of states ly-

ing on Regge trajectories in D=2, 10, or 26. The
slope of the Regge trajectory, a'; provides one mass
scale. Further mass scales Rt (I=1, . . . , d) appear to
be required for each compactified dimension, although
there may eventually be some physical principle that
determines the ratios Ri2/n'. Each D-dimensional
momentum eigenstate corresponds to an infinite
number of (D —d)-dimensional states, just as for field
theory. The mass spectrum of the compactified open
string then has the form2

n'MD2, = n —I + n' X p'p',
1=1

where n is a nonnegative integer characterizing the
nonzero string modes (discussed below), and the
internal-momentum components p are quantized in
units of 1/Ri, in analogy with compactification on a
torus. (Sums on repeated contravariant indices always
imply the metric tensor 6,J.) For arbitrary values of
Rt, these states belong to a representation of
Heisenberg-U(1)d, which is a direct product of Fock
spaces. In the limit that Rt2=n', the last term of Eq.
(1) becomes an integer and the degeneracy of states at

each mass level ~ 0 increases. In this paper we con-
struct the states corresponding to a different type of
compactification that requires Ri2 = n' and (2n')'12p'
to take on values in the root lattice (including the in-

finite number of points obtained by translating the
roots) of a finite-parameter, rank-d, non-Abelian Lie
algebra g, restricted to those cases where the roots
have equal length. The string states become organized
into representations of affine-g, where the non-
Abelian Lie subalgebra g of affine-g has rank d. The
Heisenberg-U(1)d is a subalgebra of affine-g. The first
excited level of massless particles carry the adjoint
representation of g. The internal symmetry is then
generated in a new way. It is identified as an unex-
pected symmetry of compactified strings, neither as
isometrics of an internal space nor as explicit internal
symmetry in higher dimensions.

The algebraic structure underlying the spectrum is
affine-g, a Kac-Moody Lie algebra. 3 The construction
and the algebraic structure of the light-cone-gauge,
physical-particle operators for the compactified bosonic
string are found in Eqs. (11) and (12) below. We ap-

ply these general results to the E8 I3 E8 "heterotic"
string4 by calculating the first few levels of this D = 26,
d = 16 model (see Table I). Supersymmetric generali-
zations are being studied presently. '

We approach the problem in two ways: First, we
show by a simple counting argument, which will prove
useful in practical calculations of spectra, how the on-
mass-shell physical states at each integer value of
a'MD d are organized into representations of g; then,
using a physical light-cone-gauge version of the
Frenkel-Kac construction, we rewrite the physical
operators in a form that explicitly displays the affine-g
structure of the theory.

The physical (on-mass-shell) states of the D =26
bosonic string are created by direct products of the
light-cone string operators 2„' (i = 1, . . . , D —2) and
exp(ip'x') on the ground state. In light-cone gauge
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TABLE I. The first four levels of the E8 S E8 compactified open bosonic string. In the
closed-string E8 E8 version of Ref. 4, the tachyon is decoupled and o. 'M]0 is 4 times that
given in the table.

No. states E8 S E8 representation labeled by dimensionality

2 115008

34 670620

(1,1)

(248, 1) + (1,248)

(3875,1) + (1,3875) + (248,248) + (248, 1)
+ (1,248) + 2(1,1)

(30 380, 1) + (1,30380) + (3875,248) + (248, 3875)
+ 2(248, 248) + (3875,1) + (1,3875) + 3 (248, 1)
+ 3 (1,248) + 2(1,1)

(147 250, 1) + (1,147 250) + (27 000,1) + (1,27 000)
+ (30 380,248) + (248,30 380) + (3875,3875)
+ (30 380,1) + (1,30 380) + 2(3875,248)
+ 2(248, 3875) + 3 (3875,1) + 3 (1,3875)
+ 5 (248, 248) + 5 (248, 1) + 5 (1,248) + 5 (1,1)

A„+ =0 and A„are dependent operators, and the
zero-mode operator P' is identified by (2n') '~2

xP'=20'. 7 (The 2„' are also called DDF operators. 8)

The operators x' satisfy canonical commutation rela-
tions with jr. The (D —d)-dimensional mass operator
is

D —d —2

MD „=2P+p — X p'p',
i=a

where the sum on i is over the noncompactified,
transverse directions. It follows from the light-cone-
gauge commutation relations that

[n'M', ,~„]=I—n~ i. (3)

Note that A„' commutes with p, so that only exp(ip'x')
CI'eatcs momentum in thc tI'ansvci sc directions. It as

easily confirmed for the zero-mode subspace that

a
pip) = o.

' X p'p' 1 lu), —

where the sum is on interna1 dimensions only and

lp) =exp(ip'x') l0). Since the set of operators with
internal indices commutes with the set of operators
with noncompact transverse indices, we can separate
the problem into two pieces. The Heisenberg algebra
of dual theory is defined by

[W I,~' ] = na'4 „ (5)

plus the commutation relations of the transverse
zero-mode operators. The operators with noncom-
pact-space labels alone create the Fock-space states of
the (D —d —2)-dimensional Heisenberg subalgebra,
where the states carry a (D —d)-momentum label and
the occupation-basis labels. We can then apply the
internal-space operators to each of these states to ob-
tain the complete set of physical states.

We study the degeneracy patterns of states of fixed
o. 'MD d. The product of 3 „operators contributes to
n of Eq. (1), while the exp(ip x ) operators contribute
to the last term. Since the Al form a d-dimensional
Heisenberg algebra, the number of independent opera-
tor combinations is given by the generating function
(which is the inverse of the dth power of the Euler
function9),

II (1 —x") d= X M„(d)x"=1+dx+(d/2)(d+3)x'+(d/6)(d+1)(d+8)x'
k=a n=0

+ (d/24) (d+1) (d+ 3) (d+14)x'+. . . , (6)

where M„(d) is the degeneracy of the nth state of the
d-dimensional Heisenberg algebra representation. If
we now require the o. 'MD2 d+ I to be nonnegative in-
tegers, we must require the last term in Eq. (1) to be a
nonnegative integer; given a scheme to do this, the to-
tal degeneracy results from convoluting these numbers
with the degeneracy given by Eq. (6).

The connection with the algebra g comes from solv-

ing this problem by imposing

R12= n',

and requiring (2o.') '~ p to be any point on the infinite
root lattice of a semisimple non-Abelian finite algebra
with roots of equal length. [If the roots of the algebra
do not have the same lengths, then the particles in the
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irreducible representations of g do not have equal
(D —d)-dimensional masses. ] The Lie algebras with
roots of equal length are A„[the algebra of
SU(n+ 1)], D„(n & 2) [the algebra of SO(2n) ], E6,
E7 and E8, and in the tree approximation, g can be
any direct product of these simple factors with rank d.

The root space of a semisimple Lie algebra is a Eu-
clidean space. Even so, in order to specify the
momentum components by integers when all 812= n',
it is convenient to use the simple roots ni (specified
by the Dynkin diagram) as a nonorthogonal basis of
the root lattice with metric given by the Cartan matrix
with elements CLM= (nL, nM), which is defined in
terms of the orthonormal coordinates where the sys-
tem was quantized as gi=tnLnM Th. e internal-
momentum components pI are then

(2n')'i'p'= X NLn'
L= 1

(8)

where nL is a simple root normalized for each L to
(ni, nI ) =2 and the N are integers. We rewrite the
zero-mode operators in the dual basis as xL = (x, nL)/
(2n')' 2, and pM = (2n')'i2(p, nM), SO that

[xL pM] ICLM. (9)

= n —1+ —,
' (a,a), (1Q)

where the Dynkin labels aL are always integers, and
for groups with roots of equal lengths, (a, a) is an even
integer for all weights p, which are of the form of Eq.
(8). [Note that now the zero-mode state can be writ-
ten ( (a) ) = exp(iaLx ) ~0) .]

We take the simple example of d = 1, so that
n'M2= n+N2 —1. The solutions for zero mass are
n =1, N=Q, and n =Q, N= +1, and so there are
three states with internal momenta W2, 0, and —W2,
an SU(2) triplet. For n'M2=1, there are four solu-
tions with momenta j2, 0, 0, —j2, an SU(2) singlet
plus triplet, and so on. In this way we build up the
representation of affine SU(2) with the singlet as
highest weight"; no spinors appear in this representa-
tion.

For larger values of d, the set of weights (w} in a
Weyl orbit (which is a set of weights related by Weyl
reflections, which leave the root lattice invariant) all
have the same integer values of (w, w)/2. If we recall
that each and every Weyl orbit has one and only one
weight for which the Dynkin labels are nonnegative in-
tegers, then from Eq. (5) we can compute the degen-

If we write the momentum components in the basis
dual to the simple roots, defined by aL= (2n')' (p,
nL ) = N CML, then Eq. (1) is

n'MD2 d
= n —1+ ,

' NLCLMNM-

= n —1+ —,
' aLC™aM

A„(r) = X rlAI
I=1

(1 la)

X„(r)= . c,Ja dz z":exp i
2n

(lib)

where normal ordering means that A„ is to the right of
„(n & 0) and p is to the right of x; 0 (z) here is

defined in terms of the light-cone operators,

0'(z) = x' —2i n'pIln(z) + i(2n') 'i' g —3„'z
nwO

(1 lc)
where the roots r are all normalized to (r, r) =2. The
factor e, in Eq. (1 lb) satisfies c,e, = ( —1)"'c,c„
c„c,= 1, and c„c,= e(r, s) c,+, (r+ s~0), where
e(r, s) = + l.'

With these definitions, it is a standard computation
to obtain the algebraic equations satisfied by the opera-
tors X„(r) and A„(s) (Ref. 6 and Frenkel'3 and God-

cracy of each weight and very quickly regroup the or-
bits into representations of g. '2 It is not difficult to ap-
ply this method to quite complicated cases, such as
D = 26, d =16, with g= E8 S Es. The results for the
open string up to the fourth level are listed in Table I.
The physical states of the heterotic string are given by
direct products of right-moving, N = 1 superstring
states and the left-moving bosonic states consisting of
the standard SO(D —d —2) multiplets of the Heisen-
berg-U(1)D d 2 algebra, each of which is the highest
weight of the c = —,

' representation of affine E8 I3 Es
given in the table. The squared masses of the heterot-
ic closed-string states are four times those given in the
table, and the tachyon is decoupled due to a constraint
condition.

We have made it plausible that for special choices of
the lattice, Eq. (8), of internal-momentum values, the
string states are organized into representation of an
algebra g of rank d. In fact all these states lie in irredu-
cible representations of affine g. We now transform
the operators Ai and exp(ipix ) into a set of affine
operators that generates the same Hilbert space, which
is now seen to be an infinite tower of g representa-
tions. The construction is similar to the one given by
Frenkel and Kac using the covariant vertex operator.
However, we construct the affine generators only for
the internal dimensions and insist on using the light-
cone string operators so that the states constructed by
application of these operators to the ground state will
be on the (D —d)-dimensional mass shell and have
positive norm.

The Frenkel-Kac construction uses the moments of
the vertex operator, which can create all physical
states. Thus we define the operators
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[A„(s),X (r) ] = (s, r)X„+ (r),
t

e(rs)X„+~'(r+ s), if r+ s is a root and r& —s,
[X„(r),X s) ] ='

0, if r+ s is not a root, but not zero,

[X„(r),X (, —r) ] =3„+ (r) + 2cn5„

[A„(r),A (s) ] = 2cn (r, s) 5„

(12a)

(12b)

(12c)

(12d)

[The factors c„ in Eq. (lib) are needed for Eq. (12b)
to be a commutator when rs = + 1.] This is the affine
Kac-Moody Lie algebra of g (Refs. 3 and 15), where
the roots of g have equal length. Of special impor-
tance are the terms with ca 0 in Eqs. (12c) and (12d),
called the central extension. (In the bosonic string
construction, c = —,'.) The physical states of the com-
pactified string are in representations of affine-g.

It is easily confirmed that the X„(r) create and des-
troy on-mass-shell states. By direct computation,

t
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[P,X„(r)] = —(n/2''p+ )X„(r), (13a)

[~'MD d, &g ( r) ] = —nXg ( r),

[(2n')' 'P'X„(r)] = r'X (r),

(13b)

(13c)

where we have used the light-cone gauge commuta-
tors,

[p,A t ] = (n/2ot'p+ )A„',

[P,x'] = —(i/p+ )p'.

(14a)

(14b)

(Recall that P is a dependent operator. )
Equation (12) is valid when r and s are roots. How-

ever, using the counting arguments above, we can still
classify the states at each mass level for the
Spin(32)/Z2 weight lattice of the SO(32) heterotic
string in terms of the representations of Spin(32)/Z2
(the representations congruent to the adjoint and one
spinor).

In summary, if Rt =ot' and the momentum vectors
lie on the root lattice of a semisimple Lie algebra g of
rank d, each state made from the noncompactified
space operators is the highest weight of the basic
representation of affine-g. These states are linear
combinations of the physical states constructed from
the light-cone operators At and exp(ipix ), and we
have confirmed that they do couple in general ampli-
tudes. This kind of analysis should be helpful in
achieving more realistic string models. Of course, the
internal consistency of such compactified string
theories regarding loop amplitudes, unitarity, absence
of tachyons and anomalies, and finiteness must be
checked.
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